Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Microwave Electronics (eBook)

eBook Download: PDF
2018 | 1st ed. 2018
XXIII, 554 Seiten
Springer International Publishing (Verlag)
978-3-319-68891-6 (ISBN)

Lese- und Medienproben

Microwave Electronics - Andrey D. Grigoriev, Vyacheslav A. Ivanov, Sergey I. Molokovsky
Systemvoraussetzungen
117,69 inkl. MwSt
(CHF 114,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book describes the physical basis of microwave electronics and related topics, such as microwave vacuum and microwave semiconductor devices.

It comprehensively discusses the main types of microwave vacuum and microwave semiconductor devices, their principles of action, theory, parameters and characteristics, as well as ways of increasing the frequency limit of various devices up to the terahertz frequency band. Further, it applies a unified approach to describe charged particle interaction within electromagnetic fields and the motion laws of charged particles in various media.

 The book is intended as a manual for researchers and engineers, as well as advanced undergraduate and graduate students.



Andrey D. Grigoriev graduated from Leningrad Electrotechnical Institute (LETI) in 1960 as electronics engineer. He received the PhD degree in Microwave electronics in 1967 and the Doctor of technical science degree in 1985. A.D. Grigoriev is working in LETI as assistant professor and professor, delivering lectures on electrodynamics, microwave technique and microwave electronics. He works also at 'Svetlana' JSC as a consultant. Professor Grigoriev is the author of more than 150 publications, including 4 monographies: 'Microwave cavities and slow-wave structures' (1984), 'Electrodynamics and microwave technique', 'Methods of computational electrodynamics' (2012) and 'Microwave electronics' (2016). He is a member of the editorial board of several Russian and international magazines.

Vyacheslav A. Ivanov graduated from  St Petersburg Electrotechnical University ('LETI') in 1970. He became Associate Professor in 1980. his scientific interest is  in the field of computer modeling of microwave tubes, In 1981-1982  he had a scientific research stay in Sweden.  His activities concern microwave transistors and development of industrial microwave plants. Since 1970 he lectures on Microwave Electronics. He wrote 15 textbooks and has 23 patents of the Russian Federation. 

Sergey I. Molokovsky graduated from LETI in 1953. He received the PhD and Doctor degrees in the field of microwave electronics. He is professor of Radio electronics department of the LETI. He is author of the book 'Intense electron and ion beams'. Professor Molokovsky was UNESCO expert. He authored about 150 scientific papers and  5 scientific monographs.  

Andrey D. Grigoriev graduated from Leningrad Electrotechnical Institute (LETI) in 1960 as electronics engineer. He received the PhD degree in Microwave electronics in 1967 and the Doctor of technical science degree in 1985. A.D. Grigoriev is working in LETI as assistant professor and professor, delivering lectures on electrodynamics, microwave technique and microwave electronics. He works also at “Svetlana” JSC as a consultant. Professor Grigoriev is the author of more than 150 publications, including 4 monographies: “Microwave cavities and slow-wave structures” (1984), “Electrodynamics and microwave technique”, “Methods of computational electrodynamics” (2012) and “Microwave electronics” (2016). He is a member of the editorial board of several Russian and international magazines. Vyacheslav A. Ivanov graduated from  St Petersburg Electrotechnical University ("LETI") in 1970. He became Associate Professor in 1980. his scientific interest is  in the field of computer modeling of microwave tubes, In 1981-1982  he had a scientific research stay in Sweden.  His activities concern microwave transistors and development of industrial microwave plants. Since 1970 he lectures on Microwave Electronics. He wrote 15 textbooks and has 23 patents of the Russian Federation.  Sergey I. Molokovsky graduated from LETI in 1953. He received the PhD and Doctor degrees in the field of microwave electronics. He is professor of Radio electronics department of the LETI. He is author of the book “Intense electron and ion beams”. Professor Molokovsky was UNESCO expert. He authored about 150 scientific papers and  5 scientific monographs.  

Preface 7
Contents 9
Notations 16
Introduction 19
Microwave Electronics Physical Foundations 22
1 Main Stages of Microwave Electronics Development 23
1.1 Background 23
1.2 Microwave Vacuum Electronics 25
1.3 Semiconductor Microwave Electronics 27
1.4 Comparative Characteristics of Vacuum and Semiconductor Devices 28
1.5 Prospects for the Development of Microwave Electronics 29
2 Interaction of Charged Particles with an Alternating Electromagnetic Field 31
2.1 Radiation of Individual and Collective Charged Particles 31
2.2 Macroscopic Equations of Microwave Electronics 36
2.3 Motion Equations of Charged Particles 38
2.3.1 Motion of a Single Particle in Vacuum 38
2.3.2 The Particles Ensemble Motion in Vacuum 40
2.3.3 The Particles Ensemble Motion in Solid 42
2.4 Material Parameters and Relaxation Processes 44
2.5 Noises in Microwave Devices 52
Advancement Questions 61
3 Oscillations and Waves in Charged Particle Beams 63
3.1 Space Charge Oscillations 63
3.2 Space Charge Waves in Electron Beams 65
3.3 Charge Carrier Waves in Semiconductors 69
Advancement Questions 72
4 Interaction of Charged Particle Fluxes with a High-Frequency Electromagnetic Field 73
4.1 Interaction Power 73
4.2 Interaction with Quasi-Static Field, the Induced Current. The Shokley-Ramo Theorem 77
4.3 Current in the Flat Interelectrode Gap and Its External Circuit 79
4.4 Electric Gap Field Effect on the Motion of Charged Particles 83
4.5 Energy Exchange Between Electrons and the Gap Field 86
4.6 Interaction of Charged Particles with a Travelling Wave Field 90
Advancement Questions 91
5 A Microwave Device as a Circuit Element 92
5.1 Microwave Devices Requirements 92
5.2 Classification of Microwave Devices 93
5.3 The Basic Functional Components of Electron Devices 95
5.4 Parameters and Characteristics of Microwave Devices 97
5.4.1 Device Parameters 97
5.4.2 Characteristics of Microwave Devices 98
Advancement Questions 101
Microwave Vacuum Electron Devices 103
6 Devices with Quasi-static Control 104
6.1 General Characteristics and Parameters of Devices with Quasi-static Control 104
6.2 The Monotron and Diode Admittance 107
6.3 Operating Modes of Electron Tubes 109
6.4 Amplifier Circuits 111
6.5 The Influence of Cathode Contact Inductance 113
6.6 The Influence of Space Charge and Displacement Current in the Cathode-Grid Space 115
6.7 Motion of Electrons in the Grid-Anode Space 117
6.8 Modern Medium and High Power Tetrodes 118
6.9 Microwave Vacuum Microelectronics Devices 121
Advancement Questions 124
7 O-Type Microwave Devices 126
7.1 General Characteristics of O-Type Devices 126
7.2 Klystrons 127
7.2.1 The Structure and Operating Principle of the Double-Cavity Transit-Time Klystron 127
7.2.2 Velocity Modulation in the Interaction Gap 128
7.2.3 The Kinematic Theory of Bunching 130
7.2.4 Effect of Longitudinal Electron Repulsion 135
7.2.5 The Extraction of Energy from the Bunched Electron Beam 138
7.2.6 Multi-Cavity Klystrons 142
7.2.7 Extended Interaction Klystrons 151
7.2.8 Multi-Beam and Multi-Barrel Klystrons 153
7.2.9 Sheet Beam Klystrons 157
7.2.10 Structure, Parameters and Characteristics of Modern Klystrons 158
7.2.11 Other Types of Klystrons 164
7.3 Travelling Wave Tubes 171
7.3.1 Operating Principle of Travelling Wave Tubes 171
7.3.2 The Linear Theory of O-Type TWTs 174
7.3.3 Elements of the Nonlinear Theory of TWTs 188
7.3.4 Methods of Increasing TWT Efficiency 194
7.3.5 TWT Design 197
7.3.6 Parameters and Application Regions of TWTOs 199
7.4 Backward-Wave Oscilators 201
7.4.1 Operating Principle of Backward-Wave Tubes 201
7.4.2 Linear Theory of BWOs 203
7.4.3 Electronic Tuning of BWOs 206
7.4.4 Electronic Efficiency of BWOs 207
7.4.5 Resonance BWOs 207
7.4.6 Design and Parameters of BWOs 208
7.5 O-Type Hybrid Devices 210
7.5.1 Hybridization Advantages 210
7.5.2 The TWYSTRON 210
7.5.3 The Klystrode 211
7.5.4 The Orotron 214
Advancement Questions 218
8 M-Type Microwave Electron Devices 220
8.1 General Characteristics of M-type Devices 220
8.2 Interaction of Electrons with the High-Frequency Field in M-type Devices 221
8.2.1 Motion of Electrons in Constant Crossed Fields 221
8.2.2 Interaction of Electrons with the Slow Wave 225
8.2.3 Linear Interaction Theory in M-type Devices 227
8.3 M-type Devices with an Open Electron Beam 234
8.3.1 The Traveling-Wave Tube of M-type 234
8.3.2 The M-type Backward-Wave Oscillator 238
8.4 M-type Devices with a Re-entrant Beam 240
8.4.1 The Multi-cavity Magnetron 240
8.4.2 Other Types of Magnetron 259
8.4.3 The Platinotron 264
Advancement Questions 269
9 Gyro-resonant Devices 271
9.1 The Operating Principle of Gyro-resonant Devices 271
9.2 Electron Beam Interaction with the High-Frequency Electrical Field 272
9.2.1 Cyclotron Resonance 272
9.2.2 Azimuthal Bunching 274
9.2.3 Equations of Electron Motion 277
9.2.4 Abridged Motion Equations 279
9.2.5 Field and Electrons Interaction on Cyclotron Frequency 281
9.3 The Gyrotron 281
9.3.1 The Design and Operating Principle of the Gyrotron 281
9.3.2 Electronic Efficiency 282
9.3.3 Total Efficiency and Output Power 285
9.3.4 Gyrotron Starting Current 287
9.3.5 Influence of the Spread of Electron Velocities on Gyrotron Operation 287
9.3.6 Large-Orbit Gyrotrons 288
9.3.7 Parameters and Applications of Gyrotrons 289
9.4 Gyroklystrons 290
9.4.1 Gyroklystron Design 290
9.4.2 Azimuthal Bunching in Gyroklystrons 292
9.4.3 Parameters and Applications of Gyroklystrons 294
9.5 The Gyro-TWT 295
9.5.1 Gyro-TWT Design 295
9.5.2 Features of Beam and Field Interaction 296
9.6 The Gyro-BWO 298
Advancement Questions 299
10 Relativistic Microwave Devices 301
10.1 General Characteristics of Relativistic Microwave Devices 301
10.2 Classical Relativistic Devices 302
10.2.1 Relativistic Klystrons 302
10.2.2 Relativistic TWTs and BWOs 304
10.2.3 Relativistic Magnetrons 306
10.3 Free-Electron Lasers 308
10.3.1 Working Principle of Free-Electron Lasers 308
10.3.2 The Ubitron—The Predecessor of the FEL 309
10.3.3 The FEL—Relativistic Ubitron-Self-Oscillator 313
10.3.4 Analysis of Radiation Processes in the FEL 315
10.3.5 FEL-Scattertron 316
10.3.6 High-Current FEL 317
10.3.7 X-Ray Free-Electron Laser 318
10.4 Vircators 323
10.4.1 Virtual Cathode Effect 323
10.4.2 Types and Parameters of Vircators 324
10.4.3 Low-Voltage Vircators 327
10.5 Gyrocons and Magnicons 327
Advancement Questions 331
Semiconductor Microwave Devices 333
11 Key Functional Elements of Semiconductor Microwave Devices 334
11.1 Elements of the Electronic Band Structure 334
11.2 Semiconductor Materials for Microwave Electronics 338
11.2.1 Common Semiconductor Materials 338
11.2.2 Graphene as a Semiconductor for the Microwave Band 340
11.3 Functional Elements of Microwave Semiconductor Devices (MSD) 343
11.3.1 Features of the MSD Functional Scheme 343
11.3.2 Uniformly Doped Semiconductors 344
11.3.3 Metal-Semiconductor Contact Properties 345
11.3.4 Properties of the p-n Junction 350
11.3.5 Ohmic Contact 356
11.4 Classification of Microwave Semiconductor Devices 358
Advancement Questions 359
12 Diodes with Positive Dynamic Resistance 360
12.1 Detector Diodes 360
12.1.1 Designation and Design of Detector Diodes 360
12.1.2 Static and Dynamic Characteristics 364
12.1.3 Dynamic Parameters 365
12.1.4 Circuit Application 370
12.2 Mixer Diodes 371
12.2.1 Functional Designation and Usage Principle of the Mixer Diode 371
12.2.2 Mixer Diode Schemes 374
12.3 p-i-n Diodes 376
12.3.1 Structure, Principle of Operation and Equivalent Circuit of the p-i-n Diode 376
12.3.2 Peculiarities of the Use of p-i-n Diodes in Circuits 381
12.4 Varactor Diodes 383
12.4.1 Structure, Equivalent Circuit and Applications of Varactor Diodes 383
12.4.2 Varactor Structures 384
12.4.3 Heterostructure Barrier Varactor (HBV diode) 387
12.4.4 Applications of Varactor Diodes 388
12.4.5 Manley-Rowe Relations 391
12.4.6 Parametric Amplifier 393
Advancement Questions 397
13 Diodes with Negative Dynamic Resistance 399
13.1 General Characteristics of Diodes with Negative Dynamic Resistance 399
13.2 Analysis of Semiconductor Sample Dynamic Resistance 401
13.3 Ways to Obtain an Alternating Convection Current in a Diode Structure 409
13.4 IMPATT Diodes 413
13.4.1 Structure and Operation Principle of the IMPATT Diode 413
13.4.2 Analysis of the Processes in the Avalanche Zone. Equivalent Resistance 415
13.4.3 Small-Signal Impedance of the IMPATT Diode 420
13.4.4 Nonlinear Operating Mode of the IMPATT Diode 421
13.4.5 IMPATT Diodes Operating in Trapped Plasma Transit Mode (TRAPATT) 426
13.4.6 IMPATT Diode Structure and Design 429
13.4.7 Structure and Parameters of IMPATT Diode Oscillators 432
13.5 Injection-and-Transit-Time Diodes 434
13.6 Transferred Electron Devices 435
13.6.1 The Gunn Effect. The Running High-Field Domain 435
13.6.2 Distribution of Static Field in the Gunn Diode 440
13.7 Tunnel Diode 442
13.7.1 Structure and Operating Principle 442
13.7.2 Equivalent Circuit. Features of Use in the Microwave Band 444
13.7.3 Resonance Tunnel Diode (RTD) 446
Advancement Questions 449
14 Microwave Transistors 451
14.1 Field Effect Transistors 451
14.1.1 Structure of the Schottky Field Effect Transistor 451
14.1.2 Static Characteristics of Schottky Field Effect Transistors 454
14.1.3 Small-Signal Parameters and Equivalent MESFET Circuit 457
14.1.4 Modelling of Field Effect Transistors 464
14.1.5 Peculiarities of Mathematical Modeling of Field Effect Transistors 471
14.1.6 Quasi-Two-Dimensional Temperature Model of MESFET 473
14.1.7 Noise Characteristics of Field Effect Transistors 477
14.1.8 Noise Parameters of the Transistor as a Function of the Working Regime 480
14.1.9 High Electron Mobility Field Effect Transistor 481
14.1.10 Developmental Prospects of Microwave Field Effect Transistors 484
14.2 Microwave Bipolar Transistors 487
14.2.1 Structure and Operating Principle 487
14.2.2 Equivalent Circuits and HF Parameters of BT 489
14.2.3 Heterojunction Bipolar Transistors 492
14.3 Microwave Transistor Specifics 494
14.3.1 Physical and Technological Limitations of Creating Microwave Transistors 494
14.3.2 Transistor “Family Tree” 495
14.3.3 Comparison of Transistor Speeds 498
14.3.4 New Type of Transistors: Graphene FET 499
14.4 Using Transistors in Hybrid and Monolithic IC in the Microwave Band 500
Advancement Questions 502
Appendix A: Time and Space Intervals Defining the Behavior of Charged Particles 503
Appendix B: Electron-Optical Systems of Microwave Devices 512
Appendix C: Electrodynamic Systems of Microwave Electron Devices 530
Bibliography List 557
Index 559

Erscheint lt. Verlag 17.2.2018
Reihe/Serie Springer Series in Advanced Microelectronics
Springer Series in Advanced Microelectronics
Zusatzinfo XXIII, 554 p. 339 illus., 55 illus. in color.
Verlagsort Cham
Sprache englisch
Original-Titel Mikrovolnovaya elektronika
Themenwelt Technik Elektrotechnik / Energietechnik
Schlagworte Charged Particle Motion • Gyro-resonance devices • Microwave Detectors • Microwave Devices • Microwave Electronics • Microwave Power Sources • Microwave Transistors • Negative Dynamic Impedance • Positive Dynamic Impedance • Power grid tubes • Terahertz Gap
ISBN-10 3-319-68891-X / 331968891X
ISBN-13 978-3-319-68891-6 / 9783319688916
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 15,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
CHF 65,45