Micromachines for Biological Micromanipulation (eBook)
XIII, 226 Seiten
Springer International Publishing (Verlag)
978-3-319-74621-0 (ISBN)
Dr. Qingsong Xu is Associate Professor in the Department of Electromechanical Engineering at the University of Macau. His research encompasses MEMS-based microrobotics, intelligent theory and applications, and micro-/nanopositioning systems.
Dr. Qingsong Xu is Associate Professor in the Department of Electromechanical Engineering at the University of Macau. His research encompasses MEMS-based microrobotics, intelligent theory and applications, and micro-/nanopositioning systems.
Preface 6
Contents 8
1 Introduction 1
1.1 Biological Micromanipulation 13
1.2 Tethered Micromachines for Bio-micromanipulation 14
1.3 Untethered Micromachines for Bio-micromanipulation 17
1.4 Lab-on-a-Chip Micromachines for Bio-micromanipulation 18
1.5 Microscopes for Biological Micromanipulation 19
1.6 Microforce Sensing and Feedback Control 20
1.7 Conclusion 21
References 22
2 Review of Microinjection Systems 26
2.1 Introduction 26
2.1.1 The Role of Cell Microinjection 26
2.1.2 Conventional Manual Cell Microinjection 27
2.1.3 Current Methods of Cell Microinjection 28
2.2 Injection of Adherent Cells 29
2.3 Injection of Suspended Cells 31
2.3.1 Drosophila Melanogaster Embryo 31
2.3.2 Zebrafish Embryo 32
2.3.3 Mouse Embryo 33
2.4 Robotic Cell Microinjection System 33
2.5 Microforce Sensors for Cell Microinjection 35
2.5.1 Vision-Based Force Sensors 36
2.5.2 Capacitive Force Sensors 40
2.5.3 Optical-Based Force Sensors 41
2.5.4 Piezoresistive Force Sensors 43
2.5.5 Piezoelectric Force Sensors 45
2.6 Current Challenges on Cell Microinjection 47
2.6.1 Micromanipulator Design 47
2.6.2 Injection Control Design 48
2.6.3 Cell Holder Design 48
2.6.4 Penetration Scheme Design 50
2.6.5 Injecting Pipette Maintenance 51
2.6.6 Injection Volume Issue 51
2.7 Conclusion 52
References 53
3 Design, Fabrication, and Testing of a Microforce Sensor for Microinjection 59
3.1 Introduction 59
3.2 Mechanism Design of the Microforce Sensor 61
3.3 Modeling of the Microforce Sensor 63
3.4 Fabrication and Calibration of the Microforce Sensor 65
3.4.1 Experimental Setup 65
3.4.2 Calibration Results 66
3.5 Application in Cell Microinjection 69
3.5.1 Experimental Setup 70
3.5.2 Results and Discussions 72
3.6 Conclusion 73
References 73
4 Design and Control of a Piezoelectric-Driven Microinjector 75
4.1 Introduction 75
4.2 Mechanism Design of the Piezo-Driven Cell Microinjector 76
4.3 Prototype Fabrication and Calibration 78
4.3.1 Prototype Fabrication and Experimental Setup 79
4.3.2 Calibration of Position Sensor 81
4.3.3 Calibration of Force Sensor 82
4.4 Preliminary Experimental Study 83
4.4.1 Position and Force Controller Design 83
4.4.2 Motion Planning for Cell Microinjection 84
4.4.3 Experimental Study of Cell Microinjection 85
4.5 Advanced Position and Force Switching Control Design 89
4.5.1 Weight-Based Switching Control System 89
4.5.2 Adaptive Sliding Mode Position Controller Design 91
4.5.3 Incremental PID Force Controller Design 94
4.5.4 Switching Scheme Design 94
4.6 Experimental Testing Results 95
4.6.1 Controller Setup 95
4.6.2 Position/Force Switching Control Results 96
4.6.3 Discussions 98
4.7 Conclusion 99
References 99
5 Design, Fabrication, and Testing of a Constant-Force Microinjector 101
5.1 Introduction 101
5.2 Structure Design 102
5.2.1 Design of Displacement Amplifier 102
5.2.2 Design of Zero-Stiffness Mechanism 104
5.2.3 Parametric Study 106
5.2.4 Design of Parameters and Optimization 109
5.2.5 Design of the Layout 111
5.3 Performance Evaluation with FEA Simulation 112
5.3.1 Amplification Ratio Assessment 112
5.3.2 Actuation Force and Stress Evaluation 113
5.4 Performance Testing by Experimental Study 115
5.4.1 Prototype Fabrication 115
5.4.2 Testing Result of Constant-Force Performance 116
5.4.3 Repeatability Testing Result 117
5.4.4 Comparison Experimental Result 119
5.5 Applications in Biological Micromanipulation 120
5.5.1 Experimental Setup 120
5.5.2 Controller Design 121
5.5.3 Mechanical Property Testing of Biological Cell 122
5.5.4 Experimental Testing of Cell Injection 124
5.6 Conclusion 126
References 126
6 Design, Modeling, and Control of a Constant-Force Microgripper 128
6.1 Introduction 128
6.2 Mechanism Design 130
6.2.1 Design of the System Stiffness 130
6.2.2 Design of the Constant-Force Module 131
6.3 Simulation Study with FEA 134
6.4 Design of Sliding Mode Control 138
6.4.1 Nonswitching-Type Reaching Law Design 138
6.4.2 Stability Analysis 140
6.5 Prototype Fabrication and Performance Testing 141
6.5.1 Prototype Fabrication 141
6.5.2 Gripping Range and Hysteresis Tests 142
6.5.3 Force–Displacement Relation Test 144
6.5.4 Dynamics Performance Test 144
6.6 Closed-Loop Experimental Studies 146
6.6.1 Resolution Testing Result 147
6.6.2 Grasp-Hold-Release Operation Testing Result 148
6.6.3 Further Discussion 150
6.7 Conclusion 151
References 151
7 Design and Development of a Flexure-Based Compact Constant-Force Robotic Gripper 153
7.1 Introduction 153
7.2 Mechanism Design 155
7.2.1 Design of Constant-Force Module 155
7.2.2 Design of Gripper Jaw Module 156
7.2.3 Design of the Gripper Layout 157
7.3 Parametric Design 160
7.3.1 Actuation Force Consideration 161
7.3.2 Gripping Force and Gripping Stroke Consideration 161
7.3.3 Parametric Study 166
7.4 Experimental Investigations 168
7.4.1 Prototype Development 168
7.4.2 Performance Testing Results 169
7.4.3 Biological Gripping Application 171
7.4.4 Comparison Study Result 172
7.4.5 Further Discussion 173
7.5 Conclusion 174
References 174
8 Design and Implementation of a Force-Sensing MEMS Microgripper 177
8.1 Introduction 177
8.2 Mechanism Design of the Microgripper 178
8.2.1 Actuator Design 180
8.2.2 Sensor Design 182
8.3 Performance Estimation with FEA Simulation 185
8.3.1 Statics Analysis 186
8.3.2 Cross-Axis Sensitivity Analysis 187
8.3.3 Dynamics Analysis 188
8.4 Prototype Fabrication 190
8.5 Calibration and Performance Testing 190
8.5.1 Force Sensor Calibration 190
8.5.2 Gripping Range Testing 193
8.5.3 Bio-Cellulose Grasp Operation 195
8.5.4 Further Discussion 196
8.6 Conclusions 197
References 197
9 Design, Analysis, and Development of a Piezoelectric Microsyringe Pump 199
9.1 Introduction 199
9.2 Mechanism Design 200
9.2.1 Design of Displacement Amplifier 200
9.2.2 Design of Parallelogram Flexure 202
9.3 Optimization Design and Simulation Study 203
9.3.1 Optimization Setup 203
9.3.2 Optimization Results 203
9.3.3 Simulation Results 204
9.4 Prototype Development and Experimental Results 207
9.4.1 Prototype Fabrication and Assembly 207
9.4.2 Controller Setup 209
9.4.3 Microsyringe Performance Testing Results 210
9.4.4 Microsyringe Pump Performance Testing Results 212
9.5 Conclusion 215
References 216
10 Visual Servo Control with Force Regulation for Microinjection 1
10.1 Introduction 217
10.2 Experimental Setup 218
10.3 Image Processing Procedure 220
10.3.1 Detection of the Injector 221
10.3.2 Detection of the Cells 223
10.4 Control Scheme Design 224
10.4.1 Cell Searching Process 225
10.4.2 Cell Piercing Process 226
10.5 Experimental Results 228
10.6 Conclusion 229
References 230
Index 232
Erscheint lt. Verlag | 1.2.2018 |
---|---|
Zusatzinfo | XIII, 226 p. 139 illus., 135 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Medizin / Pharmazie |
Technik | |
Schlagworte | Feedback Control • Force sensor and control • Microforce sensor • Microinjector • Micromanipulator • Microsyringe • Piezoelectric actuator • Precision Motion Control |
ISBN-10 | 3-319-74621-9 / 3319746219 |
ISBN-13 | 978-3-319-74621-0 / 9783319746210 |
Haben Sie eine Frage zum Produkt? |
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich