Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Dynamic Neuroscience (eBook)

Statistics, Modeling, and Control

Zhe Chen, Sridevi V. Sarma (Herausgeber)

eBook Download: PDF
2017 | 1st ed. 2018
XXI, 327 Seiten
Springer International Publishing (Verlag)
978-3-319-71976-4 (ISBN)

Lese- und Medienproben

Dynamic Neuroscience -
Systemvoraussetzungen
160,49 inkl. MwSt
(CHF 156,80)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book shows how to develop efficient quantitative methods to characterize neural data and extra information that reveals underlying dynamics and neurophysiological mechanisms. Written by active experts in the field, it contains an exchange of innovative ideas among researchers at both computational and experimental ends, as well as those at the interface. Authors discuss research challenges and new directions in emerging areas with two goals in mind: to collect recent advances in statistics, signal processing, modeling, and control methods in neuroscience; and to welcome and foster innovative or cross-disciplinary ideas along this line of research and discuss important research issues in neural data analysis. Making use of both tutorial and review materials, this book is written for neural, electrical, and biomedical engineers; computational neuroscientists; statisticians; computer scientists; and clinical engineers.

Zhe Chen is Assistant Professor in the Departments of Psychiatry and Neuroscience and Physiology at New York University School of Medicine, having previously worked at the RIKEN Brain Science Institute, Harvard Medical School, and Massachusetts Institute of Technology. He is a Senior Member of the IEEE, and an editorial board member of Neural Networks (Elsevier) and Journal of Neural Engineering (IOP). Professor Chen has received a number of awards including the Early Career Award from the Mathematical Biosciences Institute, and has had his work funded by the US National Science Foundation and the National Institutes of Health. He is the lead author of the book Correlative Learning: A Basis for Brain and Adaptive Systems (Johns & Wiley, 2007) and the editor of the book Advanced State Space Methods for Neural and Clinical Data (Cambridge University Press, 2015).

Sridevi Sarma is Associate Professor in the Department of Biomedical Engineering at Johns Hopkins University (JHU), having previously worked at Massachusetts Institute of Technology and Harvard Medical School. She is the Associate Director of the Institute for Computational Medicine at JHU. Professor Sarma is a recipient of the GE faculty for the future scholarship, a L'Oreal For Women in Science fellow, the Burroughs Wellcome Fund Careers at the Scientific Interface Award, the Krishna Kumar New Investigator Award from the North American Neuromodulation Society (NANS), and the Presidential Early Career Award for Scientists and Engineers (PECASE).

Zhe Chen is Assistant Professor in the Departments of Psychiatry and Neuroscience and Physiology at New York University School of Medicine, having previously worked at the RIKEN Brain Science Institute, Harvard Medical School, and Massachusetts Institute of Technology. He is a Senior Member of the IEEE, and an editorial board member of Neural Networks (Elsevier) and Journal of Neural Engineering (IOP). Professor Chen has received a number of awards including the Early Career Award from the Mathematical Biosciences Institute, and has had his work funded by the US National Science Foundation and the National Institutes of Health. He is the lead author of the book Correlative Learning: A Basis for Brain and Adaptive Systems (Johns & Wiley, 2007) and the editor of the book Advanced State Space Methods for Neural and Clinical Data (Cambridge University Press, 2015).Sridevi Sarma is Associate Professor in the Department of Biomedical Engineering at Johns Hopkins University (JHU), having previously worked at Massachusetts Institute of Technology and Harvard Medical School. She is the Associate Director of the Institute for Computational Medicine at JHU. Professor Sarma is a recipient of the GE faculty for the future scholarship, a L'Oreal For Women in Science fellow, the Burroughs Wellcome Fund Careers at the Scientific Interface Award, the Krishna Kumar New Investigator Award from the North American Neuromodulation Society (NANS), and the Presidential Early Career Award for Scientists and Engineers (PECASE).

1. IntroductionPart I Statistics & Signal Processing2 Characterizing Complex, Multi-scale Neural Phenomena Using State-Space Models3 Latent Variable Modeling of Neural Population Dynamics4 What Can Trial-to-Trial Variability Tell Us? A Distribution-Based Approach to Spike Train Decoding in the Rat Hippocampus and Entorhinal Cortex5 Sparsity Meets Dynamics: Robust Solutions to Neuronal Identification and Inverse Problems6 Artifact Rejection for Concurrent TMS-EEG DataPart II Modeling & Control Theory7 Characterizing Complex Human Behaviors and Neural Responses Using Dynamic Models8 Brain-Machine Interfaces9 Control-theoretic Approaches for Modeling, Analyzing and Manipulating Neuronal (In)activity10 From Physiological Signals to Pulsatile Dynamics: A Sparse System Identification Approach11 Neural Engine Hypothesis12 Inferring Neuronal Network Mechanisms Underlying Anesthesia induced Oscillations Using Mathematical ModelsEpilogue

Erscheint lt. Verlag 27.12.2017
Zusatzinfo XXI, 327 p. 80 illus., 62 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Mathematik / Informatik Mathematik Statistik
Medizin / Pharmazie
Technik Elektrotechnik / Energietechnik
Schlagworte Applications to neuronal data • Brain-machine interface systems • Dynamical system model of behavior • enteric nervous system • Gaussian Approximation • High-resolution electrogastrogram • Hippocampal replay • Neural Activity • Neural Engineering • Neural signal processing • Neuronal coding theories • Neuronal population theories • Oscillatory and multivariate data • State-space paradigm • Statistical neuroscience • Theoretical Neuroscience
ISBN-10 3-319-71976-9 / 3319719769
ISBN-13 978-3-319-71976-4 / 9783319719764
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 10,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich