Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Advances in Human Factors in Robots and Unmanned Systems (eBook)

Proceedings of the AHFE 2016 International Conference on Human Factors in Robots and Unmanned Systems, July 27-31, 2016, Walt Disney World®, Florida, USA
eBook Download: PDF
2016 | 1st ed. 2017
XIII, 436 Seiten
Springer International Publishing (Verlag)
978-3-319-41959-6 (ISBN)

Lese- und Medienproben

Advances in Human Factors in Robots and Unmanned Systems -
Systemvoraussetzungen
149,79 inkl. MwSt
(CHF 146,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book focuses on the importance of human factors in the development of reliable and safe unmanned systems. It discusses current challenges such as how to improve perceptual and cognitive abilities of robots, develop suitable synthetic vision systems, cope with degraded reliability of unmanned systems, predict robotic behavior in case of a loss of communication, the vision for future soldier-robot teams, human-agent teaming, real-world implications for human-robot interaction, and approaches to standardize both display and control of technologies across unmanned systems. Based on the AHFE 2016 International Conference on Human Factors in Robots and Unmanned Systems, held on July 27-31, 2016, in Walt Disney World®, Florida, USA, this book is expected to foster new discussion and stimulate new ideas towards the development of more reliable, safer, and functional devices for carrying out automated and concurrent tasks.

Advances in Human Factors and Ergonomics 2016 6
Preface 8
Contents 10
A Vision for Future Soldier-Robot Teams 15
1 Iterative Interface Design for Robot Integration with Tactical Teams 16
Abstract 16
1 Introduction 17
2 Background and Motivation 17
3 Related Work 18
4 Methodology 20
4.1 Hardware 20
4.2 Software 20
5 Iterative Interfaces 21
5.1 First Interface Iteration 22
5.2 Second Interface Iteration 23
5.3 Third and Current Interface Iteration 24
6 Challenges Faced and Lessons Learned 26
7 Conclusion and Future Work 27
Acknowledgments 27
References 28
2 Context Sensitive Tactile Displays for Bidirectional HRI Communications 30
Abstract 30
1 Introduction 30
2 Tactile Salience 32
2.1 Tactile Salience Construct 32
2.2 Adaptive Salience 34
2.3 Design Guidance for Tactile Displays 35
3 Experiments 37
4 Discussion 37
5 Conclusion 38
Acknowledgments 38
References 38
3 An Initial Investigation of Exogenous Orienting Visual Display Cues for Dismounted Human-Robot Communication 40
Abstract 40
1 Introduction 41
1.1 Experimental Aim 41
2 Methods 42
2.1 Participants 42
2.2 Experiment Task 42
2.3 Questionnaires 45
2.4 Procedure 45
3 Results 46
3.1 TD Performance 46
3.2 Robot Assistance (RA) Performance 46
3.3 TLX 46
3.4 SUS 47
3.5 Free Response Questionnaire 48
3.6 Bivariate Correlations 48
4 Discussion 49
Acknowledgments 50
4 Five Requisites for Human-Agent Decision Sharing in Military Environments 52
Abstract 52
1 Introduction 53
2 IA As an Interface 54
3 Transparency Model 55
4 Trust 56
5 Cognitive Architectures for IAs 57
6 Language Processing 58
7 Conclusions 59
5 Initial Performance Assessment of a Control Interface for Unmanned Ground Vehicle Operation Using a Simulation Platform 62
Abstract 62
1 Introduction 63
2 Methods 64
2.1 UGV and Test Environment 64
2.2 User Interface 65
2.3 Study Procedures 66
3 Results 67
4 Conclusions 69
Acknowledgments 69
References 69
Confronting Human Factors Challenges 71
6 Examining Human Factors Challenges of Sustainable Small Unmanned Aircraft System (sUAS) Operations 72
Abstract 72
1 Introduction 73
2 sUAS-Related Issues and Concerns 73
2.1 Growing Operational Community and sUAS Accessibility 74
2.2 Increasing Technological Capability 74
2.3 Regulatory Change 75
3 Human Factors Challenges 76
3.1 Command, Control, and Communication 76
3.2 Detection, Tracking, and Management of SUAS Operations 77
3.3 sUAS-Specific Human-Machine Interfaces 78
4 Technological and Procedural Advances 79
5 Conclusions and Recommendations 81
References 82
7 Mission Capabilities—Based Testing for Maintenance Trainers: Ensuring Trainers Support Human Performance 85
Abstract 85
1 Introduction 85
2 MCT Process Utilized 86
2.1 Phase 1. Prepare Test Plan 87
2.2 Phase 2. Prepare for Criticality Workshop 87
2.3 Phase 3. Conduct Criticality Workshop 88
2.4 Phase 4. Prepare for MCT 88
2.5 Phase 5. Conduct MCT 88
2.6 Phase 6. Report Results 89
3 Results 89
3.1 Criticality Attribute Workshop Results 89
3.2 MCT Event—Critical Attribute Results 91
3.3 MCT Event—TD Capability Results 93
4 Lessons Learned 95
5 Conclusion 96
References 96
8 Detecting Deictic Gestures for Control of Mobile Robots 97
Abstract 97
1 Introduction 98
2 Propaedeutics 98
3 Gesture Description 100
3.1 Static Gesture Description 101
3.2 Dynamic Gesture Description 101
3.3 Evaluation 103
4 Robot Control Concept 104
5 Summary and Outlook 105
References 105
9 Effects of Time Pressure and Task Difficulty on Visual Search 107
Abstract 107
1 Introduction 107
2 Material and Method 109
2.1 Subject 109
2.2 Apparatus and Software 109
2.3 Experiment Condition Control 110
3 Procedure 111
3.1 Pre-experiment 111
3.2 Actual Experiment 111
3.3 Performance Measures 112
4 Results 112
4.1 Effects of Display Time and Number of Stimuli on Accuracy 112
4.2 Effects of Display Time and Number of Stimuli on Reaction Time 115
5 Discussion 117
6 Conclusion 118
Acknowledgments 118
References 118
Human-Agent Teaming 120
10 Operator-Autonomy Teaming Interfaces to Support Multi-Unmanned Vehicle Missions 121
Abstract 121
1 Introduction 122
2 Flexible Goal-Based Control Architecture 123
3 Design of UV Play Interfaces 124
3.1 Sandbox Tactical Map Overview 125
3.2 Calling Plays 125
3.3 Reviewing Play Plans and Changing Play Parameters 127
3.4 Understanding Autonomy’s Rationale for Proposed Play Plan 128
3.5 Monitoring Play Execution 128
3.6 Managing Multiple Plays 130
4 Evaluation of UV Play Interfaces 131
5 Summary 132
Acknowledgments 133
References 133
11 Shaping Trust Through Transparent Design: Theoretical and Experimental Guidelines 135
Abstract 135
1 Introduction 136
2 Method 137
2.1 Participants 137
2.2 Experimental Design 138
2.3 Task/Apparatus 138
2.4 Measures 141
3 Results 141
4 Discussion 143
References 143
12 A Framework for Human-Agent Social Systems: The Role of Non-technical Factors in Operation Success 145
Abstract 145
1 Introduction 146
2 Human-Agent Team Effectiveness for Operation Success 146
3 A Framework for the Human-Agent Social Systems 147
4 Human-Agent Team Goals—Supporting Evidence 148
4.1 Rapport 150
4.2 Communication 151
4.3 Coordination 151
4.4 Team Management 152
4.5 Conclusion 153
5 Implications and Future Directions 153
Acknowledgments 154
References 154
13 Insights into Human-Agent Teaming: Intelligent Agent Transparency and Uncertainty 157
Abstract 157
1 Background 158
1.1 Situation Awareness in Mixed Initiative Decision-Making 158
1.2 Transparency and Supervisory Control of Intelligent Agents 159
1.3 Situation Awareness-Based Agent Transparency 159
1.4 Design of Transparency Displays for Heterogeneous UxV Management 161
2 Study Design and Implementation 161
2.1 Study 1: Interface 1 163
2.2 Study 2: Interface 2 164
3 Discussion 165
Acknowledgments 166
References 166
14 Displaying Information to Support Transparency for Autonomous Platforms 169
Abstract 169
1 Introduction 169
2 SAT Model 170
3 Ecological Interface Design 171
4 Integrated Displays 173
5 Pre-Attentive Cues and Ecological Psychology 174
5.1 SAT Model Based Studies 175
5.2 Study 1 176
5.3 Study 2 177
6 Conclusions 179
Acknowledgements 180
References 180
15 The Relevance of Theory to Human-Robot Teaming Research and Development 182
Abstract 182
1 Introduction 183
2 Background 183
2.1 The Role of Theory in Research 183
2.2 The Field of Human-Robot Teaming 184
2.3 Non-theoretical Development of Human-Robot Teaming 184
2.4 Applications of Theory in Human-Robot Teaming 184
3 Theories Related to Human-Robot Teaming Research 185
3.1 Theories Related to Research on Human-Robot Interfaces 185
3.2 Theories Related to Research on Characteristics that Help Robots Team 187
4 Conclusion 189
References 189
From Theory to Application: UAV and Human-Robot Collaboration 193
16 Classification and Prediction of Human Behaviors by a Mobile Robot 194
Abstract 194
1 Introduction 194
2 The ADAPT Architecture 195
3 Visualization and Prediction of Human Behaviors 195
4 Summary 200
References 200
17 The Future of Human Robot Teams in the Army: Factors Affecting a Model of Human-System Dialogue Towards Greater Team Collaboration 201
Abstract 201
1 Introduction 201
2 Models of Communication 203
3 Shared Mental Models 204
4 Verbal Communication 205
5 Non-verbal Communication 207
6 Consideration of Autonomous Teammates 207
6.1 Unmanned Vehicle Capabilities 207
6.2 Verbal Communications 208
6.3 Non-verbal Communications 209
6.4 Mapping Plans into Vehicle Actions 210
7 Toward a Human-Robot Team for Intent Understanding 211
References 211
18 Human-Autonomy Teaming Using Flexible Human Performance Models: An Initial Pilot Study 214
Abstract 214
1 Introduction 215
2 Background 216
3 Aim of the Pilot Study 217
4 Experimental Methods 217
4.1 User Interface 218
4.2 Experiment Conditions 219
4.3 Procedure 220
5 Results 221
5.1 Objective Analysis 221
5.2 Subjective Measures 224
6 Discussion 225
7 Conclusions 226
Acknowledgments 226
References 226
19 Self-scaling Human-Agent Cooperation Concept for Joint Fighter-UCAV Operations 228
Abstract 228
1 Introduction 229
2 Background 229
3 Key Aspects of Automation in Human-Machine Systems 231
4 The Concept of Self-scaling Human-Agent Cooperation 232
4.1 Framework for Automation Design in Complex Human-Machine Systems 232
4.2 Work System Design for Joint Fighter-UCAV Operations 233
4.3 Self-scaling Capabilities 235
4.4 Relations Between Human Worker and Cognitive Agents 236
5 Related Work 237
6 Conclusion 238
References 238
20 Experimental Analysis of Behavioral Workload Indicators to Facilitate Adaptive Automation for Fighter-UCAV Interoperability 241
Abstract 241
1 Introduction 242
1.1 Behavior in High Workload Situations 243
2 Experimental Setup 244
3 Experimental Findings 245
3.1 Subjective Workload Ratings 246
3.2 Performance Evaluation 247
3.3 Behavioral Adaptations 248
3.4 Findings on Usage of Strategies 251
4 Conclusions 251
References 251
Supporting Sensor and UAV Users 253
21 Model-Driven Sensor Operation Assistance for a Transport Helicopter Crew in Manned-Unmanned Teaming Missions: Selecting the Automation Level by Machine Decision-Making 254
Abstract 254
1 Introduction 254
2 Problem Scope 255
2.1 Automation as a Solution 255
2.2 Automation as a Problem 256
2.3 General Approach 256
3 Related Work 257
4 Sensor Assistant System 258
4.1 Sensor Automation Functions 259
4.2 Levels of Automation 259
5 Machine Decision Making for Selecting the Automation Level 261
5.1 Working Method 261
5.2 Proof of Concept in a Toy Problem Setup 263
6 Realization Process and Future Work 265
References 265
22 Using Natural Language to Enable Mission Managers to Control Multiple Heterogeneous UAVs 267
Abstract 267
1 Introduction 268
2 Initial Voice Usability Experiment 269
2.1 Independent Variables 269
2.2 Dependent Variables 269
2.3 Procedure 270
3 Results 271
3.1 Parameter Input Accuracy 271
3.2 Input Time 271
3.3 Workload 273
3.4 Subjective Preferences 274
4 Coordinated Flight Path Generation and Following 275
4.1 Trajectory Generation 275
4.2 Collision Avoidance 276
4.3 Intervehicle Communication 276
5 Conclusions 277
References 278
23 Adaptive Interaction Criteria for Future Remotely Piloted Aircraft 281
Abstract 281
1 Introduction 281
2 Method 283
3 Results 284
4 Discussion 286
5 Conclusions and Future Work 288
Acknowledgments 288
References 289
24 Confidence-Based State Estimation: A Novel Tool for Test and Evaluation of Human-Systems 290
Abstract 290
1 Introduction 291
2 Towards a Tool for Test and Evaluation 292
3 Enabling the Future of Test and Evaluation 294
3.1 State Estimation and Sensor Fusion 294
3.2 Confidence 294
3.3 Confidence Measures from Short Term Neural Data 295
3.4 Confidence Measures from Non-Neural and Long Term Factors 297
3.5 Measurement Improvement 297
4 Conclusion 299
Acknowledgments 300
References 300
25 Human Robots Interactions: Mechanical Safety Data for Physical Contacts 303
Abstract 303
1 Introduction 303
2 Literature Review 304
3 Description of the Problem/Situation 305
4 Methodology 306
5 Results 307
6 Conclusion 310
Acknowledgments 310
References 310
An Exploration of Real-World Implications for Human-Robot Interaction 312
26 Droning on About Drones—Acceptance of and Perceived Barriers to Drones in Civil Usage Contexts 313
Abstract 313
1 Introduction 313
2 Related Work 314
3 Method 315
3.1 Previous Focus Group Studies 316
3.2 Questionnaire 316
3.3 Participant Acquisition, Data Preparation, and Analyses 317
3.4 Sample 318
4 Results 318
4.1 Requirements on Drones in Different Usage Contexts 318
4.2 General Evaluation and Attitudes 320
4.3 Barriers 321
5 Discussion 323
6 Limitations and Outlook 324
Acknowledgments 324
References 324
27 Factors Affecting Performance of Human-Automation Teams 326
Abstract 326
1 Introduction 326
2 Stages and Levels of Automation 327
3 Reliability of Automated Systems 330
4 Trust of Automation 331
5 Workload Transition: When Automation Fails 332
6 Conclusions: Designing Automation for Effective H-A Team Performance 333
References 334
28 A Neurophysiological Examination of Multi-robot Control During NASA’s Extreme Environment Mission Operations Project 336
Abstract 336
1 Surrogate Perspective(s) for Robot Control 336
2 Research Environment and Expectations 337
3 Method 338
3.1 Participants 338
3.2 Apparatus 339
3.3 Measures 339
3.4 Design and Procedure 341
4 Results 341
5 Discussion 343
6 Conclusions and Future Work 344
Acknowledgments 345
References 345
29 A Comparison of Trust Measures in Human–Robot Interaction Scenarios 347
Abstract 347
1 Introduction 347
2 Trust 348
3 Transparency 349
4 Malfunction 349
5 Convergent Validity of Scales 350
6 Trust Scales 350
7 Automation Versus Robotics 351
8 Methods 353
8.1 Participants and Materials 353
8.2 Design and Procedure 353
9 Results 354
10 Discussion 356
Acknowledgments 356
References 357
30 Human-Robot Interaction: Proximity and Speed—Slowly Back Away from the Robot! 359
Abstract 359
1 Introduction 359
1.1 Trust in Robots 360
1.2 Proxemics 360
1.3 Speed of Approach 361
1.4 Hypotheses 361
2 Method 361
2.1 Participants 362
2.2 Design 362
2.3 Apparatuses 363
2.4 Procedure 364
3 Results 364
4 Discussion 365
Acknowledgments 366
References 367
31 Human Factors Issues for the Design of a Cobotic System 369
Abstract 369
1 Introduction 369
2 Cobotic Systems 370
2.1 Task Characterization 370
2.2 Role of Operator 371
2.3 Human System Interactions 371
2.4 Classification of Robots 372
2.5 Scheme to Describe a Cobotic System 373
3 Practical Case and Methodological Approach 375
3.1 Task, Environment and Context Analysis 375
3.2 Example: Safran’s Cobotic Project 376
3.3 Basic Design 376
3.4 Example: Safran’s Cobotic Project 376
3.5 Detailed Design 377
3.6 Example: Safran’s Cobotic Project 377
3.7 Production and Adjustment 377
4 Conclusion 378
References 378
32 A Natural Interaction Interface for UAVs Using Intuitive Gesture Recognition 380
Abstract 380
1 Introduction 381
1.1 Atmospheric Science Mission 381
2 Gesture-Based Human-Robot Interaction 383
3 Ground Control System Framework 384
3.1 Volume Definition Module 385
3.2 Gesture Module 386
3.3 Trajectory Generation Module 387
3.4 Validation Module 388
3.5 Flight Module 388
4 Results 388
5 Conclusion and Future Work 390
Acknowledgments 390
References 390
Optimizing Human-Systems Performance Through System Design 392
33 An Analysis of Displays for Probabilistic Robotic Mission Verification Results 393
Abstract 393
1 Introduction 393
2 Related Work 394
3 VIPARS—The Verification Tool 395
4 Experimental Design 396
4.1 Task 396
4.2 Independent Variable—The Displays 397
4.3 Dependent Variables 398
4.4 Hypotheses 399
4.5 Execution Details 399
5 Results 400
5.1 Hypothesis 1 400
5.2 Hypothesis 2 401
5.3 Hypothesis 3 402
6 Discussion 402
7 Conclusion 404
Acknowledgments 405
References 405
34 A Neurophysiological Assessment of Multi-robot Control During NASA’s Pavilion Lake Research Project 406
Abstract 406
1 Surrogate Perspective(s) for Robot Control 406
2 Research Environment and Expectations 407
3 Method 409
3.1 Participants 409
3.2 Apparatus 409
3.3 Measures 410
3.4 Design and Procedure 411
4 Results 412
4.1 Assessment and Selection (Pool) Phase 412
4.2 Field Phase at Pavilion Lake 413
5 Discussion, Conclusions, and Future Work 414
Acknowledgments 415
References 415
35 A Method for Neighborhood Gesture Learning Based on Resistance Distance 417
Abstract 417
1 Introduction 418
2 Related Work 419
3 Method 420
3.1 Sensing 421
3.2 Gestures 421
3.3 Data Representation (Feature Extraction) 421
3.4 The Growing Neural Gas (GNG) Algorithm 422
3.5 Q-Learning 422
3.6 Floyd’s Shortest Path Algorithm 423
3.7 Resistance Distance 423
3.8 Reward Generation 424
3.9 Data Collection, Experimentation and Results 424
4 Results and Discussion 424
5 Conclusions 426
Acknowledgments 426
References 426

Erscheint lt. Verlag 16.8.2016
Reihe/Serie Advances in Intelligent Systems and Computing
Advances in Intelligent Systems and Computing
Zusatzinfo XIII, 436 p. 150 illus., 99 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Technik Maschinenbau
Schlagworte AHFE 2016 Proceedings • Augmented-reality Display Systems • Degraded Visual Environments (DVE) • Extreme Performance Environments • High-risk Environments • Human-automation Interaction • human-centered design • Human-machine Teaming • Human-Robot Collaboration • Multimodal Display Integration • Robot Design • sensors • Soldier-Robot Teams • Trust in Automation
ISBN-10 3-319-41959-5 / 3319419595
ISBN-13 978-3-319-41959-6 / 9783319419596
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 10,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich