Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Advanced Microsystems for Automotive Applications 2017 (eBook)

Smart Systems Transforming the Automobile
eBook Download: PDF
2017 | 1st ed. 2018
XI, 247 Seiten
Springer International Publishing (Verlag)
978-3-319-66972-4 (ISBN)

Lese- und Medienproben

Advanced Microsystems for Automotive Applications 2017 -
Systemvoraussetzungen
149,79 inkl. MwSt
(CHF 146,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This volume of the Lecture Notes in Mobility series contains papers written by speakers and poster presenters at the 21st International Forum on Advanced Microsystems for Automotive Applications (AMAA 2017) 'Smart Systems Transforming the Automobile' that was held in Berlin, Germany in September 2017. The authors report about recent breakthroughs in electric and electronic components and systems, driver assistance and vehicle automation as well as safety and testing. Furthermore, legal aspects and impacts of connected and automated driving are covered. The target audience primarily comprises research experts and practitioners in industry and academia, but the book may also be beneficial for graduate students alike. 

Preface 6
Organisation Committee 8
Funding Authority 8
Supporting Organisations 8
Organisers 8
Steering Committee 8
Conference Chair 9
Conference Organizing Team 9
Contents 10
Smart Sensors 13
1 Smart Sensor Technology as the Foundation of the IoT: Optical Microsystems Enable Interactive Laser Projection 14
Abstract 14
1 MEMS Sensors—The Hidden Champions 15
1.1 Enablers for the Internet of Things 15
1.2 Challenges and Barriers for IoT Sensors 15
1.3 The Role of Smart Sensors in the IoT 16
2 Interactive Laser Projection 16
2.1 Making User Interfaces Simpler, More Flexible … and More Fun 17
2.2 Interactive Projection in Practice 18
2.3 A Window to the IoT 18
2.4 Interactive Projection for the Automotive Industry 20
2.4.1 Industry Teamwork 20
2.5 Wearables and Beyond 20
2.6 A Compact Module 21
3 Conclusion 22
2 Unit for Investigation of the Working Environment for Electronics in Harsh Environments, ESU 23
Abstract 23
1 Introduction 24
2 Monitoring Unit, ESU 24
2.1 ESU Main Data 29
2.1.1 Condensation Measurement 29
2.1.2 Relative Humidity Measurement 29
2.1.3 Vibration Measurement 30
2.1.4 Temperature Measurement 30
2.1.5 RTC 30
2.1.6 User Interface 31
2.2 Reliability of the ESU 31
2.3 EMC Test 31
3 Market Assessments 32
Acknowledgements 32
Reference 32
3 Automotive Synthetic Aperture Radar System Based on 24 GHz Series Sensors 33
Abstract 33
1 Introduction 34
1.1 Automotive Radar Sensors 35
1.2 Odometry 35
2 Related Work 35
3 SAR Algorithm 36
4 Performance Estimation 37
4.1 Azimuth Resolution 37
4.2 Range Resolution 38
4.3 Maximum Velocity 39
5 Evaluation Environment 39
6 Evaluation of Automotive Relevant SAR Properties 40
6.1 Incorrect Trajectory Measurement 41
6.2 Time-Based Sampling 42
7 Simulation and Measurement 43
7.1 Measurement 44
7.2 Simulation 45
8 Conclusion 45
Acknowledgements 46
References 46
4 SPAD-Based Flash Lidar with High Background Light Suppression 47
Abstract 47
1 Introduction 47
2 Sensor Principle 48
3 Technology and Measurements 49
4 Summary 52
References 53
Driver Assistance and Vehicle Automation 54
5 Enabling Robust Localization for Automated Guided Carts in Dynamic Environments 55
Abstract 55
1 Introduction 55
2 Related Work 57
3 The MCL/MU Approach 58
3.1 Map Update Control 59
3.2 Map Update and Map Update Fusion 60
4 Evaluation 62
5 Conclusion 64
References 65
6 Recognition of Lane Change Intentions Fusing Features of Driving Situation, Driver Behavior, and Vehicle Movement by Means of Neural Networks 66
Abstract 66
1 Introduction 66
2 Features Indicating Upcoming Lane Changes 68
3 Implementation and Sensor Data 69
4 Naturalistic Driving Study 70
5 Neural Network for Feature Classification 70
5.1 Artificial Neural Networks 71
5.2 Network Design 72
5.3 Network Parameterization 73
6 Experimental Results 73
7 Conclusion and Future Work 74
Acknowledgements 76
References 76
7 Applications of Road Edge Information for Advanced Driver Assistance Systems and Autonomous Driving 77
Abstract 77
1 Introduction 77
2 Road Edge Detection 78
2.1 Target Road Edge 78
2.2 Road Edge Detection Result 79
3 Application for Advanced Driver Assistance Systems 79
3.1 Euro NCAP 79
3.2 Integrated Lateral Assist System 80
3.2.1 Overview of Virtual Lane Guide 80
3.2.2 Target of VLG 83
3.2.3 Coordination of EPS and ESC 84
3.3 Experimental Result 85
4 Application for Autonomous Driving 87
4.1 Path Planning Algorithm 87
4.1.1 Path Planner 87
4.1.2 Path Selector 87
4.2 Simulation Result 90
4.3 Experimental Result 90
5 Conclusion 91
References 91
8 Robust and Numerically Efficient Estimation of Vehicle Mass and Road Grade 93
Abstract 93
1 Introduction 93
2 Methodology 95
2.1 Test Vehicle and Test Tracks 95
2.2 System Model 96
2.3 Recursive Least Squares (RLS) Algorithm 97
3 Sensitivity Analysis and Parameter Estimation 99
3.1 Sensitivity Analysis 99
3.2 Identification of Parameters and Validation of the Vehicle Model 100
4 Results 102
4.1 Validation with a Numerical Model 103
4.2 Results in Real-World Driving Conditions 103
5 Summary 104
References 106
9 Fast and Accurate Vanishing Point Estimation on Structured Roads 107
Abstract 107
1 Introduction 107
2 Vanishing Point 108
3 System Overview 108
3.1 Double-Edge Detection 108
3.2 Double-Edge Filtering 110
3.3 Double-Edge Grouping to Lane Markings 111
3.4 Lane Marking Filtering 112
3.5 Lane Marking Simplification 113
3.6 Vanishing Point Estimation 113
4 Results 114
5 Conclusion 116
References 116
10 Energy-Efficient Driving in Dynamic Environment: Globally Optimal MPC-like Motion Planning Framework 117
Abstract 117
1 Introduction 118
2 Problem Definition 119
2.1 Optimal Control Problem 119
2.2 Computational Complexity 120
3 Optimal Motion Planner 120
3.1 Dynamic Programming 121
3.2 Strategic Planning 121
3.3 Situation-Dependent Replanning 122
3.3.1 Prediction Horizon 125
3.3.2 Replanning Triggering 126
4 Simulation Results 126
5 Conclusion 127
Acknowledgements 127
References 127
Data, Clouds and Machine learning 129
11 Automated Data Generation for Training of Neural Networks by Recombining Previously Labeled Images 130
Abstract 130
1 Introduction 130
2 Related Work 132
2.1 Available Public Datasets 132
2.2 Image Manipulation and Recombination 133
3 Semi-artificial Dataset Creation 133
4 Evaluation 135
5 Summary and Outlook 137
References 139
12 Secure Wireless Automotive Software Updates Using Blockchains: A Proof of Concept 141
Abstract 141
1 Introduction 142
2 Background 143
2.1 Wireless Automotive Software Updates 143
2.2 Blockchains 144
3 Architecture Enabling Wireless Software Updates 145
3.1 Blockchain-Based Architecture Securing Wireless Software Updates 146
3.2 Employing Our Architecture to Distribute New SW 147
4 Proof of Concept 148
5 Evaluation 150
5.1 Overhead Due to the Use of Blockchains 150
5.2 Latency Comparison: Local SW Update Versus SW Distribution Using BC 150
5.3 Comparison of BC- and Certificate-Based Approaches 151
6 Conclusion 152
References 152
13 DEIS: Dependability Engineering Innovation for Industrial CPS 154
Abstract 154
1 Introduction 155
2 The Digital Dependability Identity (DDI) Concept 156
3 The Four Industrial Use Cases in DEIS Project 158
3.1 Automotive: Development of a Stand-Alone System for Intelligent Physiological Parameter Monitoring 158
3.2 Automotive: Enhancement of an Advanced Driver Simulator for Evaluation of Automated Driving Functions 160
3.3 Railway: Enabling Plug-and-Play Scenarios for Heterogeneous Railway Systems 161
3.4 Health Care: Enhancement of Clinical Decision App for Oncology Professional 162
4 Opportunities for DDI Applications 164
5 Conclusions 165
References 166
Safety and Testing 167
14 Smart Features Integrated for Prognostics Health Management Assure the Functional Safety of the Electronics Systems at the High Level Required in Fully Automated Vehicles 168
Abstract 168
1 Introduction 168
2 Prognostics Health Management 170
3 PHM Strategy 172
4 PHM Indicators and Parameters for the RUL Estimation 175
Acknowledgements 178
References 178
15 Challenges for the Validation and Testing of Automated Driving Functions 180
Abstract 180
1 Introduction 180
2 Challenges for Validation and Testing 182
2.1 Complexity of Automated Driving Functions 182
2.2 Variation of Scenarios and Parameters 183
2.3 Scenario Selection and Test Generation 183
3 Current Methodologies/Technology Overview 184
4 Validation—Global Approach 185
5 Supporting Tools in the Validation Task 185
6 Standardization 187
7 Conclusion 188
Acknowledgements 188
References 188
16 Automated Assessment and Evaluation of Digital Test Drives 189
Abstract 189
1 Introduction 190
2 State of the Art in Automotive Testing 191
2.1 Test Processes and Methodologies 191
2.2 Digital Test Drive 193
3 Requirements and Constraints for Automated Assessment of Digital Test Drives 193
4 Automated Assessment Concept 194
4.1 HiL System 195
4.2 Assessment Domain 196
4.3 Visualization and Data Analytics Domain 196
5 Application on Exemplary Driver-Assistance System 197
6 Conclusion and Outlook 198
References 198
17 HiFi Visual Target—Methods for Measuring Optical and Geometrical Characteristics of Soft Car Targets for ADAS and AD 200
Abstract 200
1 Background 200
2 Soft Car Targets 201
3 Project Goals 202
4 Initial Measurements and Results 203
4.1 Measurement Setup 203
4.1.1 Optical Measurement Setup 203
4.1.2 Geometry Measurement Setup 204
4.2 Preliminary Results 205
4.2.1 Optical Measurement Results 205
4.2.2 Geometry Variation Due to Assembly 206
5 Conclusions and Future Work 207
Acknowledgments 207
References 207
Legal Framework and Impact 209
18 Assessing the Impact of Connected and Automated Vehicles. A Freeway Scenario 210
Abstract 210
1 Introduction 211
2 Review of the Literature 211
3 Case-Study Simulation 212
3.1 The Traffic Model of Antwerp’s Ring Road 213
3.2 Human and CACC Drivers 214
3.3 Assessment Metrics 216
3.4 Simulation Scenarios 217
4 Results 217
4.1 Energy Consumption 219
5 Conclusions 220
19 Germany’s New Road Traffic Law—Legal Risks and Ramifications for the Design of Human-Machine Interaction in Automated Vehicles 223
Abstract 223
1 Introduction 223
2 The Amendments to the Federal Road Traffic Act 224
2.1 Levels of Automation Addressed 224
2.2 Definition of “Driver” 225
2.3 Interaction Between the Automation System and the Driver 225
3 The Statutory Amendments from the Driver’s Perspective 226
3.1 Brief Overview of the Statutory Liability Regime for Drivers 226
3.2 Ramifications of the Obligations Imposed on Automated System Users 226
3.2.1 Obligation to Use the Automation System Properly 227
3.2.2 Sharing of the Driving Task Between the Driver and the Automation System 227
4 Liability Issues from the Manufacturer’s Perspective 228
4.1 Brief Overview of the Statutory Liability Regime for Manufacturers 228
4.2 Product Liability Issues in Relation to Automated Vehicles 229
4.2.1 Constructional Deficiencies 229
4.2.2 Instructional Errors 230
5 Summary 231
References 232
20 Losing a Private Sphere? A Glance on the User Perspective on Privacy in Connected Cars 233
Abstract 233
1 Introduction 233
2 Literature Review 234
2.1 Methodology 234
2.2 Relevant Privacy Factors for the Adoption of Connected Services 235
3 User Study 238
3.1 Results 238
3.2 Discussion 240
4 Conclusion and Practical Implications 241

Erscheint lt. Verlag 29.8.2017
Reihe/Serie Lecture Notes in Mobility
Lecture Notes in Mobility
Zusatzinfo XI, 247 p. 116 illus., 104 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Technik Bauwesen
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte Automated Driving • Connected Vehicles • Driver Assistance Systems • Electric Vehicles • Road Safety
ISBN-10 3-319-66972-9 / 3319669729
ISBN-13 978-3-319-66972-4 / 9783319669724
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 8,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlagen der Berechnung und baulichen Ausbildung von Stahlbauten

von Jörg Laumann; Markus Feldmann; Jörg Frickel …

eBook Download (2022)
Springer Fachmedien Wiesbaden (Verlag)
CHF 117,20