Fractional Hermite-Hadamard Inequalities
Jinrong Wang, Guizhou University, Guiyang, China; Michal Fečkan, Comenius University in Bratislava, Slovakia.
Table of Content:
Chapter 1 Introduction
1.1 Fractional Calculus via Application and Computation
1.2 Motivation of Fractional Hermite-Hadamard's Inequality
1.3 Main Contents
Chapter 2 Preliminaries
2.1 Definitions of Special Functions and Fractional Integrals
2.2 Definitions of Convex Functions
2.3 Singular Integrals via Series
2.4 Elementary Inequalities
Chapter 3 Fractional Integral Identities
3.1 Identities involving Riemann-Liouville Fractional Integrals
3.2 Identities involving Hadamard Fractional Integrals
Chapter 4 Hermite-Hadamard's inequalities involving Riemann-Liouville fractional integrals
4.1 Inequalities via Convex Functions
4.2 Inequalities via r-Convex Functions
4.3 Inequalities via s-Convex Functions
4.4 Inequalities via m-Convex Functions
4.5 Inequalities via (s, m)-convex Functions
4.6 Inequalities via Preinvex Convex Functions
4.7 Inequalities via (beta,m)-geometrically Convex Functions
4.8 Inequalities via geometrical-arithmetically s-Convex Functions
4.9 Inequalities via ( ,m)-logarithmically Convex Functions
4.10 Inequalities via s-GodunovaLevin functions
4.11 Inequalities via AG(log)-convex Functions
Chapter 5 Hermite-Hadamard's inequalities involving Hadamard fractional integrals
5.1 Inequalities via Convex Functions
5.2 Inequalities via s-e-ondition Functions
5.3 Inequalities via geometric-geometric co-ordinated Convex Function
5.4 Inequalities via Geometric-Geometric-Convex Functions
5.5 Inequalities via Geometric-Arithmetic-Convex Functions
References
Erscheinungsdatum | 22.05.2018 |
---|---|
Reihe/Serie | Fractional Calculus in Applied Sciences and Engineering ; 5 |
Verlagsort | Berlin/Boston |
Sprache | englisch |
Maße | 170 x 240 mm |
Gewicht | 777 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Technik | |
Schlagworte | Applied • Applied mathematics • Differential Equations • Differential Equations and Dynamical Systems • Functional Analysis • Historiography • Jewish • Mathematics • Mathematik • MENDES-FLOHR • STJ102 • Technik • Ungleichungen |
ISBN-10 | 3-11-052220-9 / 3110522209 |
ISBN-13 | 978-3-11-052220-4 / 9783110522204 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich