Molecular Architectonics (eBook)
IX, 539 Seiten
Springer International Publishing (Verlag)
978-3-319-57096-9 (ISBN)
This book draws on the main themes covered during the International Workshop on Molecular Architectonics which took place in Shiretoko, Japan from August 3 to 6, 2015. The concepts and results explored in this book relate to the term 'molecular architectonics' which stands for electronic, optical and information-processing functions being orchestrated by molecular assemblies. This area is defined as the third stage of single-molecule electronics and builds on stage one, where measurements were performed on single-molecule layered films, and stage two, the resulting quantitative analyses. In this work, experts come together to write about the most important aspects of molecular architectonics. This interdisciplinary, visionary and unique book is of interest to scientists working on electronic materials, surface science and information processing sciences using noise and fluctuation.
Takuji Ogawa is Professor at Osaka University, Japan. His research is focused on the syntheses and measurements of single molecular electronic components, self-ordering of nanostructures on solid surfaces as well as on the development of new measurement techniques to estimate single-molecule conductivity.
Takuji Ogawa is Professor at Osaka University, Japan. His research is focused on the syntheses and measurements of single molecular electronic components, self-ordering of nanostructures on solid surfaces as well as on the development of new measurement techniques to estimate single-molecule conductivity.
Preface 6
Contents 8
Systems for Molecular Architectonics 11
1 Single-Molecule Boolean Logic Gates 12
Abstract 12
1 Introduction 12
2 Transduction Performance in Hybrid Molecular Electronics 16
3 Transduction Performance in Semi-classical Monomolecular Electronics 19
4 Transduction in Quantum Monomolecular Electronics 21
5 Conclusions 34
Acknowledgements 34
References 34
2 Information, Noise, and Energy Dissipation: Laws, Limits, and Applications 36
Abstract 36
1 Energy Dissipation and Miniaturization 36
2 Fundamental Lower Limits of Energy Dissipation for Writing an Information Bit [7–10] 37
3 On Energy Dissipation During Information Erasure 38
3.1 Types of Erasure of Data in Memories [12] 38
3.2 Landauer’s Principle 39
3.3 Non-validity of Landauer’s Principle 40
3.4 Erasure Dissipation in Practical Computing [7, 8] 42
3.5 Conclusion About the Non-validity of Landauer’s Principle 43
4 Thermal Noise in the Quantum Regime [13, 14] 43
4.1 A New Approach to Assess Zero-Point Johnson Noise: Energy and Force in a Capacitor [13] 44
4.2 A New Approach to Assess Zero-Point Johnson Noise: Two “Perpetual Motion Machines” [13] 47
4.3 Is the Johnson–Nyquist Formula Valid? [13] 50
4.4 Conclusions and Observations About the Fluctuation–Dissipation Theorem [13, 14] 50
5 Summary and Comments 51
References 52
Modeling Information Processing Using Nonidentical Coulomb Blockade Nanostructures 54
1 Introduction 54
2 Molecular Protected NP as a CB System 56
2.1 NP as a Single-Electron Transistor 59
3 The R-SET Model 62
3.1 Charging Equations of an Oscillatory R-SET 63
3.2 Information Processing with R-SETs 64
4 Variability at the Nanoscale 66
4.1 Redundancy to Counteract Noise: An XOR Gate 67
4.2 Taking Advantage of Diversity: Image Processing with Ensembles of R-SETS 68
5 Conclusions 74
References 75
4 Detection and Control of Charge State in Single Molecules Toward Informatics in Molecule Networks 78
Abstract 78
1 Introduction 78
2 Concept 79
3 Experimental 81
4 Static Charge Detection 83
5 Detection Mechanism 86
6 Detection of Charge Dynamics 88
7 Applications 92
7.1 Single-Molecule Discrimination 92
7.2 Detection of Spatial Distribution 93
7.3 Control of Charge State and Stochastic Resonance 96
8 Conclusions 100
Acknowledgements 100
References 100
5 DNA Molecular Electronics 104
Abstract 104
1 Introduction 104
2 DNA-Templated Self-Assembly 105
3 Supramolecular Interactions in Aqueous Solution: Porphyrin/DNA Complexes 106
4 DNA-Templated Complex on a Substrate Surface: Single-Molecule Observation 108
4.1 Porphyrin/DNA Complex 108
4.2 Cytochrome c/DNA Complex 109
5 Electric Conduction of DNA Nanostructures 110
5.1 Porphyrin/DNA Networks 113
5.2 Cytochrome c/DNA Networks 113
5.3 Stochastic Resonance 115
6 Summary 116
References 117
6 Coulomb-Blockade in Low-Dimensional Organic Conductors 119
Abstract 119
1 Introduction 119
2 Sample Preparation and Measurement 121
3 Electrical Characteristics of Monolayer 124
4 Coulomb Blockade of Charge Transport 126
4.1 Current–Voltage Characteristics 126
4.2 Curve Fittings 128
4.3 Dependence on Channel Length and Gate Voltage 129
4.4 Efros–Shklovskii Variable-Range Hopping 130
5 Construction of 2D CB Array Model 131
5.1 Simulation of Defect Distribution 131
5.2 Density Functional Theory (DFT) Calculation 133
6 Theoretical Estimation of VT(0) and T* 136
7 Conclusion 140
References 141
Emerging Computations on Nano-Electronic Circuits and Devices 143
1 Introduction 143
2 Natural Phenomena and Biological Behaviors as ``Text Books'' for Designing Novel Electronic Circuits/Devices 145
2.1 Information Processing in Nature/Living Things 145
2.2 Models of Natural Phenomena/Biological Behaviors 153
2.3 Policy for the Construction of Nature-Inspired/Bio-mimetic Devices 155
3 Basis of Single-Electron Circuits 155
4 Nature-Inspired/Bio-mimetic Single-Electron Circuits 157
4.1 Single-Electron Reaction--Diffusion Circuit 157
4.2 Single-Electron ``Slime-Mold'' Circuit 158
4.3 Single-Electron ``Soldier Crab Ball Gate'' Circuit 158
4.4 Single-Electron ``Ant Group'' Circuit 160
4.5 Neuromorphic Single-Electron Circuit 163
5 Conclusion 169
References 169
8 Addressing a? Single Molecular Spin? with Graphene-Based Nanoarchitectures 172
Abstract 172
1 Introduction 173
2 Molecular Spin Transistor 175
3 Fabrication of Graphene-Based Electrodes 177
4 Molecule with Magnetic Fingerprint 180
5 Realization of Molecular Devices 184
6 Low-Temperature Experiments 185
7 Conclusions 188
Acknowledgements 189
References 189
Surface Science for Molecular Architectonics 192
Mechanical and Magnetic Single-Molecule Excitations by Radio-Frequency Scanning Tunneling Microscopy 193
1 Introduction 193
2 Rf-STM 195
3 Molecular-Chain Oscillators 199
4 Resonant Mechanical Excitation 205
5 Nuclear and Electron Spin Resonance 210
6 Summarizing Discussion and Outlook 215
References 219
10 Assembly and Manipulation of Adsorbed Radical Molecules for Spin Control 225
Abstract 225
1 Introduction 225
2 Experiments 227
3 Bonding Configuration of Pc Molecule 227
4 Molecule Film of Double-Decker Phthalocyaninato Tb(III) Complexes 229
5 Hetero-Ligand Double-Decker Molecule 234
6 Triple Double-Decker Molecule 237
7 Kondo Resonance 239
8 Double- and Triple-Decker Pc and Kondo Behavior 240
9 Ligand Effect on the Kondo Behavior 245
10 Molecular Ordering and Kondo Resonance 247
11 Summary 250
References 251
Measurements for Molecular Architectonics 256
Perspectives of Molecular Manipulation and Fabrication 257
1 Introduction 257
2 Molecular Manipulation Experiments 260
2.1 A Short Survey of SPM-based Manipulation 260
2.2 Two-Contact Manipulation 261
2.3 An Excursion into Molecular Electronics 262
2.4 Continuous Manipulation with the AFM 264
2.5 Manipulating Complex Molecules 266
3 Modeling the Mechanics of Molecular Manipulation 276
3.1 Building an Efficient Mechanical Model 276
3.2 Training the Model: Adsorption Potentials from Force Measurements 281
3.3 The Role of Surface Corrugation 294
4 A Molecular Manipulation Laboratory 301
4.1 Introduction 301
4.2 MomaLab 302
4.3 Initial Results from MomaLab 310
5 Outlook 316
References 318
12 Interelectrode Stretched Photoelectro-Functional DNA Nanowire 324
Abstract 324
1 Introduction 325
2 Various Methods for Immobilization of DNA Molecule 327
3 Observation of DNA Nanowires on Mica Surface 328
4 Dielectrophoretic Trapping Method for DNA Stretching 334
5 Functionalization of Stretched DNA Nanowires 337
5.1 Association of Ruthenium(II) Complexes into Stretched DNA Nanowires 337
5.2 I–V Characteristics of the DNA/Ru(bpy)32+ Nanowires 339
6 Summary 339
Acknowledgements 340
References 340
13 Charge Transport Mechanisms in Oligothiophene Molecular Junctions Studied by Electrical Conductance and Thermopower Measurements 343
Abstract 343
1 Introduction 343
2 Charge Transport Mechanisms in Molecular Junctions 345
3 Experimental Method 347
3.1 Sample Preparations 347
3.2 Conductance Measurements 347
3.3 Thermopower Measurements 348
4 Results and Discussion 349
4.1 Conductance Measurements 349
4.2 Thermopower Measurements 351
5 Conclusion 354
Acknowledgements 354
References 354
14 Electron Transport Through a Single Molecule in Scanning Tunneling Microscopy Junction 356
Abstract 356
1 Background 357
2 Basic Theory of Electron Transport Through Nanoscale Conductors 359
3 Experimental Techniques to Evaluate the Conductance of a Single Molecule 361
3.1 Determination of Number of Transport Channels and the Transmission Probabilities 364
3.1.1 Shot Noise Measurement 364
3.1.2 MARs Measurement 365
4 Electron Transport Through a Single C60 Molecule 370
4.1 Fabrication of a C60-SMJ and Conductance Measurement with STM 370
4.2 MARs Through a C60 Molecule and the Determination of n and {/varvec /tau}_{{/varvec i}} {/varvec }({/varvec i} /equal 1/comma 2/comma /ldots /comma {/varvec n}) 374
5 Summary and Outlook 377
Acknowledgements 378
References 378
15 Spin Polarization of Single Organic Molecule Using Spin-Polarized STM 381
Abstract 381
1 Introduction 381
2 STM Magnetoresistance Measurement 382
3 Ambiguous Spin Polarization Measurement in Spin-Polarized STM 385
4 Quantitative STM Spin Polarization Measurement 393
5 STM Spin Polarization Vector Measurement 394
6 Conclusions 395
Acknowledgements 396
References 396
16 Modification of Electrode Interfaces with Nanosized Materials for Electronic Applications 398
Abstract 398
1 Introduction 398
2 Immobilization of Nanoparticles on Electrode Surfaces 401
3 Immobilization of Organic or Complex Molecules on Electrode Surfaces 403
4 Immobilization of Biomolecules on Electrode Surfaces 410
5 Conclusions and Outlook 412
Acknowledgements 413
References 413
Design and Synthesis of Molecules for Molecular Architectonics 416
17 Design and Syntheses of Molecules for Nonlinear and Nonsymmetric Single-Molecule Electric Properties 417
Abstract 417
1 Introduction 417
2 Rectification 422
3 Negative Differential Resistance (NDR) in Single Molecules 430
References 433
18 Synthesis of Rigid ? Organic Molecular Architectures and Their Applications in Single-Molecule Measurement 436
Abstract 436
1 Introduction 436
2 Synthesis of Rigid ? Molecules 437
2.1 Pyrrole-Based ? Systems 438
2.1.1 Porphyrinoids 438
2.1.2 Cyclo[N]Pyrrole 439
2.2 Hydrocarbons 444
2.2.1 Phenacenes 446
2.2.2 Fused Azulenes 453
3 Connecting-Unit Preparation 453
4 Conclusion 457
Acknowledgements 457
References 457
19 Surface Synthesis of Molecular Wire Architectures 463
Abstract 463
1 Introduction 463
2 Synthesis of Molecular Wire Assembly by Epitaxial Electrochemical Polymerization 464
3 Heterojunction of Molecular Wire Materials 468
4 Carbon Nanowire Materials: Graphene Nanoribbons 474
5 Conclusion 478
Acknowledgements 478
References 479
20 Synthesis of Conjugated Polyrotaxanes and Its Application to Molecular Wires 483
Abstract 483
1 Introduction 483
2 Synthesis of Insulated Molecular Wires 485
2.1 Synthesis of Permethyl Cyclodextrin-Based Insulated Molecular Wires with Defect-Free Structure 485
2.2 Synthesis of Defect-Free Cyclodextrin-Based Insulated Molecular Wires with Polyrotaxane Structure 486
2.3 Synthesis of Insulated Molecular Wires with High Intermolecular Charge Mobility 493
2.4 Synthesis of Highly Conductive Zigzag Insulated Molecular Wire with High Intermolecular Charge Mobility 496
2.5 Synthesis of Functionalized Insulated Molecular Wires 499
2.6 Synthesis of Insulated Metallopolymers 502
3 Summary and Conclusions 505
Acknowledgements 506
References 506
21 Synthesis and Properties of Novel Organic Components Toward Molecular Architectonics 509
Abstract 509
1 Tripodal Anchor 509
2 Selenium-Functionalized Tripodal Anchors 510
3 Pyridine- and Amine-Functionalized Tripodal Anchors 512
4 Pyridine-Functionalized Tripodal Anchors for ?-Channel Hybridization 514
5 Thiophene-Functionalized Tripodal Anchors for ?-Channel Hybridization 517
6 Oligothiophenes 519
7 Oligothiophenes with Bulky Silyl Substituents as Insulating Units 521
8 Oligothiophenes with Fluorenes as Insulating Units 523
9 Insulation-Tuned Oligothiophenes 526
10 Long Insulated Oligothiophenes 529
11 Insulated Oligothiophenes with Electron-Accepting Characteristics 530
12 Summary 532
Acknowledgements 532
References 532
Erscheint lt. Verlag | 6.7.2017 |
---|---|
Reihe/Serie | Advances in Atom and Single Molecule Machines | Advances in Atom and Single Molecule Machines |
Zusatzinfo | IX, 539 p. 320 illus., 120 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Chemie ► Physikalische Chemie |
Naturwissenschaften ► Physik / Astronomie | |
Technik ► Maschinenbau | |
Schlagworte | Boolean Logic Gates • Conjugated polyrotaxanes • Coulomb-blockade nanostructures • DNA nanowires • Logic Gates • Molecular spintronics • Noise and fluctuation • Scanning Probe Microscopy • Single molecule electronics • Supramolecular electronics |
ISBN-10 | 3-319-57096-X / 331957096X |
ISBN-13 | 978-3-319-57096-9 / 9783319570969 |
Haben Sie eine Frage zum Produkt? |
Größe: 28,4 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich