Submicron Porous Materials (eBook)
XII, 346 Seiten
Springer International Publishing (Verlag)
978-3-319-53035-2 (ISBN)
Preface 5
Contents 8
Contributors 10
1 Structured and Surface-Modified Carbon Xerogel Electrodes for Capacitive Deionization 12
1.1 Introduction 12
1.2 Development of Porous Carbon Materials for Capacitive Deionization 13
1.3 Effect of Carbon Xerogel Porosity on Salt Adsorption in Capacitive Deionization Cells 15
1.4 Development of Microporous Carbon and Salt Adsorption Capacity Analysis 20
1.5 Importance of Surface Chemistry for Porous Carbon Materials in Capacitive Deionization 22
1.6 Creation of Surface-Functionalized Microporous and Mesoporous Materials 25
1.7 Conclusions 31
References 32
2 Carbon Gels and Their Applications: A Review of Patents 35
2.1 Introduction 35
2.2 Carbon Gels 36
2.3 Improvements in the Synthesis Process of Carbon Gels 39
2.3.1 Drying Methods 39
2.3.2 Heating Methods 41
2.4 Improvements in the Properties of Carbon Gels 43
2.4.1 Nature and Concentration of the Main Reagents 43
2.4.1.1 Melamine Formaldehyde Aerogels 46
2.4.1.2 Phenolic-Furfural Aerogels 47
2.4.1.3 Phenol-Formaldehyde Aerogels 47
2.4.2 Introduction of Doping Agents and Additives 48
2.4.2.1 Carbon Gels Doped with Other Forms of Carbon 49
2.4.2.2 Carbon Gels Doped with Inorganic Materials 51
2.4.2.3 Carbon Gels Doped with Metals 51
2.4.2.4 Functionalization 52
2.4.2.5 Introduction of Additives 53
2.4.3 Thermal Treatments 54
2.4.3.1 Carbonization 54
2.4.3.2 Activation 54
2.5 Applications 55
2.5.1 Electronic and Energy Storage Applications 55
2.5.2 Catalyst Support 57
2.5.3 Gas Storage 58
2.5.4 Coatings 58
2.5.5 Other Applications 59
2.6 Conclusions 59
References 59
3 Robust Mesoporous Polymers Derived from Cross-Linked Block Polymer Precursors 63
3.1 Introduction 63
3.1.1 How to Derive Mesoporous Polymers from Block Polymer Precursors 64
3.1.2 Pore Stability of Mesoporous Polymers 68
3.1.3 Robust Mesoporous Polymers Derived from Cross-Linked Block Polymer Precursors 69
3.1.3.1 Cross-Linking Reaction Utilizing Functional Groups in the Matrix Block 73
3.1.3.2 Cross-Linking Reaction Utilizing Functional Groups Introduced by Copolymerization 77
3.1.3.3 In Situ Cross-Linking by Copolymerization of a Cross-Linker with the Matrix Monomer 82
3.1.3.4 Thermosetting Polymerization in the Presence of Block Polymer Precursors 86
3.2 Conclusions 86
References 87
4 Melt-Stretching Polyolefin Microporous Membrane 90
4.1 Introduction 90
4.2 Melt-Stretching Polypropylene Microporous Membrane 93
4.2.1 Raw Material Characteristics 93
4.2.2 Melt-Stretching-Induced Crystallization 93
4.2.3 Annealing 95
4.2.4 Cold Stretching 96
4.2.5 Hot Stretching 97
4.2.6 Heat Setting 98
4.2.7 The Whole Change During the Fabrication of PP Microporous Membrane 99
4.3 Melt-Stretching Polyethylene Microporous Membrane 102
4.3.1 Materials Characteristics 102
4.3.2 Annealing 104
4.3.3 The Whole Structure Change During the Preparation of PE Microporous Membrane 105
4.4 PP/PE/PP Trilayer Microporous Membrane 106
4.5 Compound Microporous Membrane 107
4.6 Ceramic-Coated Membrane 108
4.7 Polymer Powder Coated Membrane 109
4.8 Future Prospective 109
Acknowledgements 110
References 111
5 AAO Templates with Different Patterns and Channel Shapes 115
5.1 Introduction 115
5.2 AAO Templates 117
5.3 Pre-patterned Guided Anodization 119
5.3.1 Direct Indentation Methods 120
5.3.2 Indirect Indentation Methods 121
5.3.3 AAO Layers Grown on the Pre-textured Al 122
5.4 Two-Step Self-organized Anodization 131
5.4.1 AAO with Conical Channels 133
5.4.2 AAO with Step-Shaped Nanochannels 135
5.4.3 AAO Layers with Branched Nanochannels 136
5.4.4 AAO with Serrated Nanochannels 137
5.4.5 AAO with Periodically Branched Channels 140
5.4.6 AAO with Modulated Pore Diameters 141
5.5 AAO Layers Grown on Supporting Substrates 143
5.5.1 AAO with Horizontally Aligned Channels 148
References 150
6 Porous Thin Films from Sol-Gel 165
6.1 Introduction 165
6.2 Films Preparation 166
6.2.1 From Sol to Film 166
6.2.2 Pores Formation 169
6.3 Films Porosity Characterization 173
6.3.1 Ellipsometry 173
6.3.2 Other Characterization Techniques 184
6.4 Applications 185
6.4.1 Sensors 185
6.4.2 Photocatalysis and Solar Applications 186
6.4.3 Bio-applications 190
6.4.4 Other Applications 192
References 193
7 Synthesis Strategies and Emerging Catalytic Applications of Siliceous Materials with Hierarchically Ordered Porosity 197
7.1 Introduction 197
7.2 Synthesis Strategies 198
7.2.1 Structure-Directed Materials Syntheses: From Mesoporous to Macroporous Architectures Design 198
7.2.1.1 Surfactant Templating Chemistry 198
7.2.1.2 Mesopore Expansion in Micelle-Templated Synthesis 201
7.2.1.3 Colloidal Templating Approach 204
7.2.1.4 Precursor Infiltration Technique 205
7.2.1.5 Sedimentation/Aggregation Technique 206
7.2.2 Hierarchically Ordered Porous Materials 206
7.2.2.1 Surfactant/Colloidal Templating Approach 207
7.3 Emerging Catalytic Applications of 3D Hierarchically Ordered Porous Silica Materials 213
7.3.1 Heterogeneous Catalysis 213
7.3.1.1 Oxidation Reactions Dedicated to Chemicals Synthesis and Air Depollution 213
7.3.1.2 Biofuel Synthesis 216
Biodiesel Synthesis 216
Fischer-Tropsch Synthesis 216
7.4 Conclusion and Future Challenges 217
References 218
8 Porous Silicon: From Optical Sensor to Drug Delivery System 224
8.1 Porous Silicon 225
8.1.1 Fabrication of Porous Silicon 225
8.1.2 Functionalization of Porous Silicon 228
8.2 Introduction to Porous Sensors 229
8.3 PSi Optical Sensors 231
8.3.1 Interferometric Sensors 232
8.4 Polarimetric Sensors 236
8.5 Key Elements in Drug Delivery 237
8.6 General Considerations on Nanostructured DDS 239
8.7 Carrier Dimensions and External Functionalization 241
8.7.1 Particle Dimension 242
8.7.2 External Surface Functionalization 242
8.8 Type of Nanocarriers 243
8.8.1 Organic DDS 243
8.8.2 Inorganic DDS 244
8.9 Porous Silicon 245
8.9.1 Why Porous Silicon? 245
8.9.2 Drug Loading 246
8.9.3 Solid-State Properties of Loaded Compounds 249
8.9.4 Drying 250
8.9.5 Release 250
8.9.6 Smart PSi 253
8.10 Conclusions 253
References 254
9 Modeling Thermal Transport in Nano-Porous Semiconductors 260
9.1 Introduction 260
9.2 Analytic Models for Nano-porous Material Thermal Properties 262
9.2.1 Effective Medium Theory for Heat Conduction as a Function of Porosity 263
9.2.2 Effective Medium Theory for Heat Conduction as a Function Phonon MFP 263
9.3 BTE for Nano-Porous Material Thermal Properties 265
9.3.1 Phonon Transport Modeling 265
9.3.2 Monte Carlo Modeling of the BTE 265
9.3.3 Numerical Handling of the BTE 267
9.3.4 Kinetic Theory Integral Formulation for Porous Media 269
9.3.5 Effective Monte Carlo Modeling 269
9.3.6 MC Modeling Results and Discussions 272
9.4 MD for Nano-Porous Material's Thermal Properties 277
9.4.1 Principle and Methodology 277
9.4.2 Nano-Porosity Modeling 279
9.4.3 Nano-Porous Silicon Thermal Conductivity 281
9.5 Concluding Remarks 287
References 288
10 Scale Transition for Mass Transport in Porous Structures 292
10.1 Introduction 295
10.2 Theory 298
10.2.1 Flow Module 298
10.2.2 Heat Transfer Module 301
10.3 Problem Statement 308
10.3.1 Microscopic Model 310
10.3.1.1 Mesoscopic Model 313
10.4 Macroscopic Model 315
10.5 Numerics 317
10.6 Validation 318
10.7 Results and Discussion 320
10.8 Conclusions 325
References 326
11 Positron Beam-Based Ortho-Positronium Porosimetry 329
11.1 Positron 329
11.2 Interaction of Positron with Solids and Ps Formation 330
11.3 Ps as a Probe for Porosity: Observables 332
11.3.1 o-Ps 3? Annihilation 333
11.3.2 o-Ps Lifetime 335
11.3.3 o-Ps Emission Kinetic Energy 337
11.4 Ps as a Probe for Porosity: Information 339
11.4.1 Open Volume Dimension 339
11.4.2 Open Volume Distribution and Interconnectivity 342
11.4.3 Pore Surface Characterization 344
11.5 Conclusion 346
Acknowledgements 347
References 347
Index 350
Erscheint lt. Verlag | 21.2.2017 |
---|---|
Zusatzinfo | XII, 346 p. 152 illus., 115 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Technik ► Bauwesen |
Technik ► Maschinenbau | |
Schlagworte | Capture of H2 and COx • Carbon-Based Materials • characterization techniques • lab-on-a-chip • Porous Anodic Alumina • Porous Glasses • Porous Materials Characterization Techniques • Porous metals • Porous Silicon • Self-Arranged Systems |
ISBN-10 | 3-319-53035-6 / 3319530356 |
ISBN-13 | 978-3-319-53035-2 / 9783319530352 |
Haben Sie eine Frage zum Produkt? |
Größe: 13,1 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich