Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Spectral Analysis of Growing Graphs - Nobuaki Obata

Spectral Analysis of Growing Graphs (eBook)

A Quantum Probability Point of View

(Autor)

eBook Download: PDF
2017 | 1st ed. 2017
VIII, 138 Seiten
Springer Singapore (Verlag)
978-981-10-3506-7 (ISBN)
Systemvoraussetzungen
74,89 inkl. MwSt
(CHF 73,15)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book is designed as a concise introduction to the recent achievements on spectral analysis of graphs or networks from the point of view of quantum (or non-commutative) probability theory. The main topics are spectral distributions of the adjacency matrices of finite or infinite graphs and their limit distributions for growing graphs. The main vehicle is quantum probability, an algebraic extension of the traditional probability theory, which provides a new framework for the analysis of adjacency matrices revealing their non-commutative nature. For example, the method of quantum decomposition makes it possible to study spectral distributions by means of interacting Fock spaces or equivalently by orthogonal polynomials. Various concepts of independence in quantum probability and corresponding central limit theorems are used for the asymptotic study of spectral distributions for product graphs.
This book is written for researchers, teachers, and students interested in graph spectra, their (asymptotic) spectral distributions, and various ideas and methods on the basis of quantum probability. It is also useful for a quick introduction to quantum probability and for an analytic basis of orthogonal polynomials.

This book is designed as a concise introduction to the recent achievements on spectral analysis of graphs or networks from the point of view of quantum (or non-commutative) probability theory. The main topics are spectral distributions of the adjacency matrices of finite or infinite graphs and their limit distributions for growing graphs. The main vehicle is quantum probability, an algebraic extension of the traditional probability theory, which provides a new framework for the analysis of adjacency matrices revealing their non-commutative nature. For example, the method of quantum decomposition makes it possible to study spectral distributions by means of interacting Fock spaces or equivalently by orthogonal polynomials. Various concepts of independence in quantum probability and corresponding central limit theorems are used for the asymptotic study of spectral distributions for product graphs.This book is written for researchers, teachers, and students interested in graph spectra, their (asymptotic) spectral distributions, and various ideas and methods on the basis of quantum probability. It is also useful for a quick introduction to quantum probability and for an analytic basis of orthogonal polynomials.

1. Graphs and Matrices.- 2. Spectra of Finite Graphs.- 3. Spectral Distributions of Graphs.- 4. Orthogonal Polynomials and Fock Spaces.- 5. Analytic Theory of Moments.- 6. Method of Quantum Decomposition.- 7. Graph Products and Asymptotics.- References.- Index.

Erscheint lt. Verlag 17.2.2017
Reihe/Serie SpringerBriefs in Mathematical Physics
SpringerBriefs in Mathematical Physics
SpringerBriefs in Physics
Zusatzinfo VIII, 138 p. 22 illus., 9 illus. in color.
Verlagsort Singapore
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Graphentheorie
Mathematik / Informatik Mathematik Statistik
Naturwissenschaften Physik / Astronomie Theoretische Physik
Technik
Schlagworte asymptotic combinatorics • complex networks • graph spectra • orthogonal polynomials • Quantum probability
ISBN-10 981-10-3506-7 / 9811035067
ISBN-13 978-981-10-3506-7 / 9789811035067
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Eiichi Bannai; Etsuko Bannai; Tatsuro Ito; Rie Tanaka

eBook Download (2021)
Walter de Gruyter GmbH & Co.KG (Verlag)
CHF 146,50