An Introduction to Optimal Estimation of Dynamical Systems
Kluwer Academic Publishers (Verlag)
978-90-286-0067-6 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
The text has evolved as lecture notes for short courses and seminars given to professionals at Pr>efaae various private laboratories and government agencies, and during the past six years, in conjunction with engineering courses taught at the University of Virginia. To motivate the reader's thinking, the structure of a typical estimation problem often assumes the following form: * Given a dynamical system, a mathematical model is hypothesized based upon the experience of the investigator.
1. Least Square Approximation.- 1.1 A Curve Fitting Example.- 1.2 Linear Batch Estimation.- 1.3 Constrained Least Square Estimation.- 1.4 Linear Sequential Estimation.- 1.5 Nonlinear Estimation: Least Square Differential Correction.- 1.6 Remarks.- 1.7 Exercises.- 1.8 References.- 2. Minimal Variance Estimation.- 2.1 Preliminary Remarks.- 2.2 Minimal Variance Estimation (without apriori State Estimates).- 2.3 Minimal Variance Estimation (with apriori State information).- 2.4 Covariance Propagation in Linear Estimation Algorithms.- 2.5 Nonuniqueness of the Weight Matrix.- 2.6 Remarks.- 2.7 Exercises.- 2.8 References.- 3. Parameter Estimation: Applications.- 3.1 Preliminary Comments.- 3.2 Planar Triangulation.- 3.3 Stellar Resection Photogrammetry/Spacecraft Orientation Estimation.- 3.4 Triangulation of Orbital Photography.- 3.5 Mathematical Modeling of the Earth's Topography.- 3.6 Mathematical Models of the Gravitational Potential.- 3.7 Remarks.- 3.8 References.- 4. Survey of Ordinary Differential Equations.- 4.1 Preliminary Remarks.- 4.2 The State Space Approach.- 4.3 Linear Dynamical Systems.- 4.3.1 Homogeneous Linear Dynamical Systems.- 4.3.2 Linear State Variable Transformations.- 4.3.3 Forced Linear Systems.- 4.4 Nonlinear Dynamical Systems.- 4.4.1 Overview.- 4.4.2 Analytical Continuation Methods.- 4.4.3 Runge-Kutta Methods.- 4.4.4 Closure Error Analysis.- 4.5 Parametric Differentiation.- 4.6 Remarks.- 4.7 Exercises.- 4.8 References.- 5. Estimation of Dynamical Systems.- 5.1 Preliminary Remarks.- 5.2 Initial State Estimation.- 5.3 Initial State and Model Parameter Estimation.- 5.4 Sequential State Estimation for Linear Dynamic Systems.- 5.4.1 Unforced Linear Systems.- 5.4.2 Process Noise Forced Dynamic Systems.- 5.5 Optimal Continuous State Estimation.- 5.6 Sequential Estimation of Nonlinear Dynamical Systems.- 5.7 Remarks.- 5.8 Exercises.- 5.9 References.- 6. Estimation of Dynamical Systems: Applications.- 6.1 Projectile Trajectory Estimation.- 6.2 Loss of Precision in Covariance Propagation Algorithms.- 6.3 Dynamically Constrained Satellite Photogrammetry.- 6.4 Remarks.- 6.5 References.- Appendix A Minimization of Functions of n-Vaviahles.- Appendix B Basic Probability Concepts.- Appendix C Linear Algebraic Equations.
Reihe/Serie | Mechanics: Dynamical Systems ; 3 |
---|---|
Zusatzinfo | biography |
Verlagsort | Dordrecht |
Sprache | englisch |
Maße | 150 x 230 mm |
Gewicht | 660 g |
Themenwelt | Technik ► Maschinenbau |
ISBN-10 | 90-286-0067-1 / 9028600671 |
ISBN-13 | 978-90-286-0067-6 / 9789028600676 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich