Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Applications to Marine Disaster Prevention (eBook)

Spilled Oil and Gas Tracking Buoy System

Naomi Kato (Herausgeber)

eBook Download: PDF
2016 | 1st ed. 2017
X, 201 Seiten
Springer Tokyo (Verlag)
978-4-431-55991-7 (ISBN)

Lese- und Medienproben

Applications to Marine Disaster Prevention -
Systemvoraussetzungen
96,29 inkl. MwSt
(CHF 93,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book focuses on the recent results of the research project funded by a Grant-in-Aid for Scientific Research (S) of the Japan Society for the Promotion of Science (No. 23226017) from FY 2011 to FY 2015 on an autonomous spilled oil and gas tracking buoy system and its applications to marine disaster prevention systems from a scientific point of view. This book spotlights research on marine disaster prevention systems related to incidents involving oil tankers and offshore platforms, approaching these problems from new scientific and technological perspectives. The most essential aspect of this book is the development of a deep-sea underwater robot for real-time monitoring of blowout behavior of oil and gas from the seabed and of a new type of autonomous surface vehicle for real-time tracking and monitoring of oil spill spread and drift on the sea surface using an oil sensor. The mission of these robots is to provide the simulation models for gas and oil blowouts or spilled oil drifting on the sea surface with measured data for more precision of predictions of oil and gas behavior. 


Thisbook focuses on the recent results of the research project funded by aGrant-in-Aid for Scientific Research (S) of the Japan Society for the Promotionof Science (No. 23226017) from FY 2011 to FY 2015 on an autonomous spilled oiland gas tracking buoy system and its applications to marine disaster preventionsystems from a scientific point of view. This book spotlights research onmarine disaster prevention systems related to incidents involving oil tankersand offshore platforms, approaching these problems from new scientific andtechnological perspectives. The most essential aspect of this book is the developmentof a deep-sea underwater robot for real-time monitoring of blowout behavior ofoil and gas from the seabed and of a new type of autonomous surface vehicle forreal-time tracking and monitoring of oil spill spread and drift on the seasurface using an oil sensor. The mission of these robots is to provide thesimulation models for gas and oil blowouts or spilled oil drifting on the seasurface with measured data for more precision of predictions of oil and gasbehavior. 

Preface 6
Contents 10
1 Introduction 12
References 17
2 Lessons from Marine-Based Oil Spill and Gas Leak Accidents 19
2.1 Major Marine-Based Oil Spill and Gas Leak Accidents 19
2.2 Subsea Environmental Effects by the DWH Oil Spill Accident 20
2.3 Surface Oil Slick Behavior After the DWH Oil Spill Accident 22
2.4 Impact of the DWH Oil Spill Accident on Contingency Plan, Preparedness, and Regulations 23
References 24
3 Development and Operation of Underwater Robot for Autonomous Tracking and Monitoring of Subsea Plumes After Oil Spill and Gas Leak from Seabed and Analyses of Measured Data 26
3.1 Introduction 27
3.2 SOTAB-I Overview 29
3.2.1 Outlines of SOTAB-I 29
3.2.2 Hardware Description 30
3.2.2.1 Power Supply 30
3.2.2.2 Processing and Control Unit 32
3.2.2.3 Actuators 34
3.2.2.4 Tracking 36
3.2.2.5 Orientation 37
3.2.2.6 Communication 37
3.2.2.7 Surveying Sensors 38
3.2.2.8 Emergency 40
3.2.3 Software Description 40
3.2.3.1 Ship Computer 41
3.2.3.2 SOTAB-I Computer 42
3.2.3.3 Acoustic Communication 44
3.3 SOTAB-I Guidance and Control 45
3.3.1 General Description 45
3.3.1.1 Operating Modes 45
3.3.1.2 Operating Zones 46
3.3.1.3 Control Priorities 47
3.3.2 Equations of Motion 48
3.3.3 Depth Control 51
3.3.3.1 PID Depth Control 51
3.3.3.2 Depth Control with Time Estimation 51
3.3.3.3 Progressive Depth Control 55
3.3.3.4 Heading Control 57
3.3.4 Experimental Result 58
3.3.4.1 Field Test in Toyama Bay on the 28th of November 2014 58
3.3.4.2 Field Test in Toyama Bay on the 20th of March 2015 59
3.3.4.3 Field Test in Toyama Bay on the 11th of June 2015 61
3.3.4.4 Towing Tank Test at Osaka University on the 26th of August 2015 63
3.3.4.5 Field Test off Joetsu, Niigata, on the 3rd of September 2015 64
3.3.5 Simulation 66
3.3.5.1 Depth Control 67
3.3.5.2 Heading Control 68
3.3.5.3 Simulation of Path Planning 71
3.4 Water Surveying 73
3.4.1 Sensors Configuration and Calculation Process 73
3.4.1.1 CTD Data 73
3.4.1.2 Water Current Measurements 74
3.4.1.3 Dissolution of Substances 83
3.4.2 Vertical Water Column Survey in the Gulf of Mexico 85
3.4.2.1 Temperature, Salinity, and Density 85
3.4.2.2 Water Currents 87
3.4.2.3 Dissolution of Substances 87
3.4.3 Vertical Water Column Survey in Komatsushima 89
3.4.3.1 Vertical Distributions of Temperature, Salinity, and Density 90
3.4.3.2 Comparison of Vertical Water Currents Profile 90
3.4.4 Vertical Water Column Survey in Toyama Bay 92
3.4.4.1 Temperature, Salinity, and Density 92
3.4.4.2 Vertical Profile of Water Currents 93
3.5 Conclusions 94
Appendix 97
References 101
4 Development of a Robotic Floating Buoy for Autonomously Tracking Oil Slicks Drifting on the Sea Surface (SOTAB-II): Experimental Results 103
4.1 Introduction 104
4.2 SOTAB-II 108
4.2.1 Mechanical Design 108
4.2.1.1 Hull Design 108
4.2.1.2 Mainsail and Jib Sail 110
4.2.1.3 Keel Design 110
4.2.1.4 Brake Board 110
4.2.1.5 Rudder 111
4.3 Hardware Description 111
4.3.1 Power Supply 111
4.3.2 Onboard Computer 111
4.3.3 Actuators 111
4.3.4 Sensors 112
4.3.4.1 Guidance and Navigational Sensors 113
4.3.4.2 Oceanographic Sensors 113
4.3.5 Communication 114
4.4 Software Module 114
4.4.1 Data Acquisition Module 114
4.4.2 Guidance, Navigation, and Control Module 115
4.5 Guidance, Navigation, and Control 115
4.5.1 Coordinate System and Sensor Configuration Description 115
4.5.2 Decision-Making Algorithm 116
4.5.2.1 Case A (Target Heading and Target Speed Derivation if SOTAB-II Is Surrounded by Oil) 119
4.5.2.2 Case B (Target Heading and Target Speed Derivation if SOTAB-II Is Out of Oil Slick) 119
4.5.2.3 Case C (Target Heading and Target Speed Derivation if SOTAB-II Is Tracking the Edge of the Oil Slick) 119
4.5.3 Guidance and Navigation 121
4.5.4 Control 122
4.5.4.1 Sail Control 122
4.5.4.2 Rudder Control 124
4.5.4.3 Brake Board Control 125
4.6 Experimental Results 125
4.6.1 Experimental Results on Free Drift and Controlled Drift 125
4.6.2 Simulated Oil Spill Tracking Results 127
4.6.2.1 Experimental Results at Pond 128
4.6.2.2 Sea Experiment Results 131
4.7 Conclusions 133
References 133
5 Numerical Simulation of Oil and Gas Blowout from Seabed in Deep Water 136
5.1 Introduction 136
5.2 Numerical Model 139
5.2.1 Simple Oil-Tracking Model 139
5.2.2 Hybrid Plume/Lagrangian Model 141
5.2.2.1 Plume Model: Lagrangian Control Volume Method 141
5.2.2.2 Conservation Equation in Plume Structure 142
5.2.2.3 Kinetics of Methane Hydrate 144
5.2.2.4 Dissolution of Methane Gas into Seawater 147
5.2.2.5 Lagrangian Tracking Model of Gas Bubble at the Far Field 148
5.3 Field Simulation 148
5.3.1 Deepspill Experiment 148
5.3.2 Crude Oil Spill Behavior Without Phase Change 151
5.3.3 Gas Spill Behavior with Phase Change 152
5.4 Summary 157
References 158
6 Effect of Liquid-Gas Interaction on Plume Structure in Blowout Flow 160
6.1 Introduction 160
6.2 Numerical Method 162
6.2.1 Governing Equations 162
6.2.2 Description of the Interphase Interaction 163
6.2.3 Numerical Procedure 165
6.3 Results and Discussion 166
6.3.1 Validation of the Numerical Code: Three-Phase Bubble Column 166
6.3.2 Effect of the Interaction Between Gas and Oil Phases on the Plume Structure: Oil-Gas-Water Three-Phase Flow Behavior 168
6.4 Conclusions 173
References 174
7 Numerical Simulation of Spilled Oil Drifting with DataAssimilation 176
7.1 Introduction 176
7.2 Nakhodka Oil Spill Accident 177
7.3 Simulation of Oil Drift 181
7.3.1 Velocity Configuration of Spilled Oil 181
7.3.2 Treatment of Oil 182
7.3.3 Numerical Models of Ocean and Atmospheres 183
7.3.4 Selection of DA Scheme 184
7.4 Efficacy of DA for Estimation of Oil Drift 189
7.4.1 Prediction of Amount of Oil Drifted Ashore at a Certain Time Using POM and WRF (Tsustukawa et al. 2012) 189
7.4.2 DA for Estimation of Oil Drifts Using ROMS and WRF (Suzuki et al. 2015) 193
7.4.3 Computational Results 195
7.5 Efficacy of Data Assimilation with SOTAB-II 197
7.5.1 SOTAB-II 197
7.5.2 DA Using Data from SOTAB-II 197
7.5.3 Computational Results 198
7.6 Effect of Number of SOTAB-IIs 201
7.6.1 Computational Results 201
7.7 Conclusion 203
References 204
8 Conclusions 205
References 207

Erscheint lt. Verlag 24.8.2016
Zusatzinfo X, 201 p. 124 illus., 96 illus. in color.
Verlagsort Tokyo
Sprache englisch
Themenwelt Technik Maschinenbau
Technik Umwelttechnik / Biotechnologie
Wirtschaft Betriebswirtschaft / Management
Schlagworte Autonomous Underwater Robot • Floating Buoy Robot • JSPs • Moddelling of Oil and Gas Blowout • Modelling of oil Slick Drifting on Sea Surface • Quality Control, Reliability, Safety and Risk • Real Time Monitoring • SINTEF • SOTAB-I • SOTAB-II • Water Quality and Water Pollution
ISBN-10 4-431-55991-4 / 4431559914
ISBN-13 978-4-431-55991-7 / 9784431559917
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich