Nicht aus der Schweiz? Besuchen Sie lehmanns.de

High-Performance and Specialty Fibers (eBook)

Concepts, Technology and Modern Applications of Man-Made Fibers for the Future
eBook Download: PDF
2016 | 1st ed. 2016
XIII, 451 Seiten
Springer Tokyo (Verlag)
978-4-431-55203-1 (ISBN)

Lese- und Medienproben

High-Performance and Specialty Fibers -
Systemvoraussetzungen
106,99 inkl. MwSt
(CHF 104,50)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book reviews the key technologies and characteristics of the modern man-made specialty fibers mainly developed in Japan. Since the production of many low-cost man-made fibers shifted to China and other Asian countries, Japanese companies have focused on production of high-quality, high-performance super fibers as well as highly functionalized fibers so-called 'Shin-gosen'. ZylonTM and DyneemaTM manufactured by Toyobo, TechnoraTM produced by Teijin, and VectranTM developed by Kuraray are those examples of super fibers. Carbon fibers ToraycaTM from Toray have occupied the most advanced high-performance application area. Various types of polyester fibers having design-shaped cross-sections and special fiber morphologies and those showing specific physico-chemical properties have also been developed to acquire a high-value textile market of the world.

This book describes how these high-tech fibers have been developed and what aspects are the most important in each fiber based on its structure-property relationship. Famous specialists both in industry and academia are responsible for the contents, explaining the design concepts and the special technologies for the production of these special fibers. For university teachers and students, this volume is an excellent textbook that elucidates the basic concepts of modern fibers. At the same time, researchers, both in academia and industry, will find a comprehensive overview of recent man-made fibers.

This publication, presenting the most easily understandable general survey of specialty man-made fibers to date, is dedicated to the 70th-anniversary of the Society of Fiber Science and Technology, Japan.


This book reviews the key technologies and characteristics of the modern man-made specialty fibers mainly developed in Japan. Since the production of many low-cost man-made fibers shifted to China and other Asian countries, Japanese companies have focused on production of high-quality, high-performance super fibers as well as highly functionalized fibers so-called 'Shin-gosen'. ZylonTM and DyneemaTM manufactured by Toyobo, TechnoraTM produced by Teijin, and VectranTM developed by Kuraray are those examples of super fibers. Carbon fibers ToraycaTM from Toray have occupied the most advanced high-performance application area. Various types of polyester fibers having design-shaped cross-sections and special fiber morphologies and those showing specific physico-chemical properties have also been developed to acquire a high-value textile market of the world.This book describes how these high-tech fibers have been developed and what aspects are the most important in each fiber based on its structure-property relationship. Famous specialists both in industry and academia are responsible for the contents, explaining the design concepts and the special technologies for the production of these special fibers. For university teachers and students, this volume is an excellent textbook that elucidates the basic concepts of modern fibers. At the same time, researchers, both in academia and industry, will find a comprehensive overview of recent man-made fibers.This publication, presenting the most easily understandable general survey of specialty man-made fibers to date, is dedicated to the 70th-anniversary of the Society of Fiber Science and Technology, Japan.

Preface 6
List of the Editorial Staff 10
Contents 12
Part I: Advancement of Fiber Science and Technology 15
Chapter 1: History of Fiber Structure 16
1.1 Introduction 16
1.2 From Micelle Model to Fringed-Micelle Model for Natural Fibers 17
1.2.1 Micelle Model 17
1.2.2 Fringed-Micelle Model for Macromolecules 20
1.2.3 Conclusion 22
1.3 From Fringed-Micelle Microfibril Model to Shish-Kebab Model for Synthetic Fibers 23
1.3.1 Fringed-Micelle Microfibril Model (Hess-Kiessig Model) 24
1.3.2 Paracrystalline Layer Lattice-Microfibril Model (Hosemann-Bonart Model) 26
1.3.3 Folded Chain Microfibril Model (Peterlin Model) 28
1.3.4 Shish-Kebab Structure Model (Pennings-Keller Model) 28
1.4 Conclusion 30
References 31
Chapter 2: Progress in Structure Analysis Techniques of Fibers 33
2.1 Introduction 33
2.2 Development of Structure Analysis of Fibers 35
2.2.1 Wide-Angle X-ray Scattering Technique for Crystal Structure Analysis 35
2.2.2 Neutron Scattering Method 37
2.2.3 Electron Diffraction Technique 38
2.3 Case Studies of Crystal Structural Analysis of Fibers 39
2.3.1 Synthetic Fibers 39
2.3.1.1 Polyethylene 39
2.3.1.2 Polyoxymethylene 41
2.3.2 Natural Fibers 42
2.3.2.1 Cellulose 42
2.3.2.2 Silk Fiber 44
2.4 Vibrational Spectroscopic Technique 49
2.4.1 Historical Development 49
2.4.2 Progression Bands 52
2.4.3 Longitudinal Acoustic Mode Bands 54
2.5 Solid-State NMR Spectroscopy 55
2.6 AFM and STM 55
2.7 Thermal Analysis 56
2.8 Computer Simulations 56
2.9 Conclusions 57
References 57
Chapter 3: Progress in Fiber Spinning Technology 60
3.1 Introduction 60
3.2 Definition of Fiber Spinning Technology 61
3.3 Theoretical Analysis of Fiber Spinning Dynamics 63
3.3.1 Melt Spinning of Noncircular Cross-Section Fibers 63
3.3.2 Non-steady-state Spinning 64
3.3.3 Development of Higher-Order Structure 65
3.3.4 Effect of Molecular Entanglement 66
3.4 Development of Technology for Online Measurement of Spinning Process 66
3.5 Distinctive Fiber Spinning Technologies 71
3.6 Concluding Remark 74
References 75
Chapter 4: History of Polyester Resin Development for Synthetic Fibers and Its Forefront 77
4.1 Introduction[7] 77
4.2 Methods of Synthesis [6] [8] [9] 78
4.2.1 DMT Method and Direct Polymerization Method 78
4.2.2 Polycondensation Reaction 79
4.2.3 Molecular Weight 80
4.2.4 Polymerization System 80
4.2.5 Polycondensation Catalysts 81
4.3 Copolymerization Polyester 81
4.3.1 Copolymerization Components and Manufacture Method 81
4.3.2 Dyeability 84
4.3.3 Hydrolyzability 84
4.3.4 Flame Retardant Property 85
4.3.5 Mixed Filaments of Different Shrinkage 85
4.4 Bio-based PET 85
4.4.1 Background 85
4.4.2 Bio-based Ethylene Glycol 86
4.4.3 Bio-based Terephthalic Acid 87
4.4.4 Biomass Content of PET 87
4.5 Polyesters Other Than PET (3GT, PBT, and PEN) 88
4.5.1 Major Aromatic Polyesters Other Than PET 88
4.5.2 3GT Fiber [21] 88
4.5.3 PBT Fiber 89
4.5.4 PEN Fiber [22] 89
4.6 Concluding Remark 89
References 90
Part II: High-Strength High-Modulus Organic Fibers 91
Chapter 5: History of Super Fibers: Adventures in Quest of the Strongest Fiber 92
5.1 Introduction 92
5.2 Rigid Polymers 94
5.2.1 Aramid Fibers 94
5.2.2 Polyarylate Fiber 96
5.2.3 Heterocyclic Polymer 97
5.3 Semirigid Polymers 98
5.4 Flexible Polymers 98
5.5 Concluding Remarks 100
References 101
Chapter 6: Microscopically Viewed Relationship Between Structure and Mechanical Property of Crystalline Polymers: An Important... 103
6.1 Introduction 104
6.2 Experimental Evaluation of Ultimate Elastic Constants of Polymers 105
6.2.1 X-Ray Diffraction Method 105
6.2.2 Vibrational Spectroscopic Method 106
6.3 Theoretical Evaluation of Ultimate Elastic Constants of Polymers 107
6.4 Relationship Between Chain Conformation and Young´s Modulus 108
6.5 Crystal Structure and Anisotropic Mechanical Property 109
6.6 Strength of Polymer Chains 111
References 115
Chapter 7: Dyneema: Super Fiber Produced by the Gel Spinning of a Flexible Polymer 117
7.1 Introduction 117
7.2 Essence of the Gel-Spinning Technology 119
7.2.1 Important Points for Increasing the Tenacity of Polyethylene Fibers 119
7.2.2 Evolution of the Fundamental Concepts of the Gel-Spinning and Industrial Efforts on Its Commercialization 121
7.2.2.1 Controlled State of Entanglements Using Ultrahigh Molecular Weight Polymers and Semi-dilute Solution Systems 123
7.2.2.2 Spinning Process as a Process for Controlling the Crystalline Morphology Leading to High Drawability 124
7.2.2.3 Drawing Process 125
7.3 Structure Evolution in Spinning and Drawing Processes 126
7.3.1 Discovery of Shish-Kebab Structure in Dilute UHMWPE Solutions 126
7.3.2 Structural Development of Shish-Kebab Structure in Entangled Semi-dilute Solutions 127
7.3.3 Structural Changes in the Drawing Process: Transformation of Shish-Kebab into Microfibrous Structure 131
7.4 Fiber Properties and Applications 133
7.5 Future Perspectives 135
7.5.1 Recent Trends for Polymer Development 135
7.5.2 New Spinning and Drawing Technologies 136
7.6 Conclusions 137
References 138
Chapter 8: Development of High-Strength Poly(ethylene terephthalate) Fibers: An Attempt from Semiflexible Chain Polymer 141
8.1 Introduction 141
8.2 Background of Research 143
8.3 Strategy for Development of High-Strength PET Fibers 144
8.4 Various Technologies Applied for the Modification of Spinning Process 146
8.4.1 Modification of Spinning Process Through Addition of Modifier 146
8.4.2 Utilization of Pressurized Medium 147
8.4.3 Heating of Spin-Line Immediately Below the Spinneret Irradiating Carbon Dioxide Laser 147
8.4.4 Modification of Spin-Line Introducing the Concept of Direct Spin-Drawing 148
8.5 Concept for Strengthening of PET Fibers 149
8.6 Estimation for the Change in the State of Molecular Entanglement 152
8.7 Concluding Remark 154
References 155
Chapter 9: Technora Fiber: Super Fiber from the Isotropic Solution of Rigid-Rod Polymer 156
9.1 Introduction 156
9.2 Polymer Research 157
9.3 Technora Polymer 157
9.4 Polymer Preparation 158
9.5 Spinning Solutions 160
9.6 Fiber Spinning 161
9.7 Fiber Drawing 163
9.8 Manufacturing Process of PPTA and Technora 165
9.9 Technora Aramid Products 167
9.10 Structure and Morphology 168
9.11 Chemical Resistance 169
9.12 Fibrillar Structure and Fatigue Resistance 173
9.13 Polymer Sequence Distribution Analysis 174
9.14 Conclusion 176
References 176
Chapter 10: Vectran: Super Fiber from the Thermotropic Crystals of Rigid-Rod Polymer 177
10.1 General Introduction 177
10.2 Characterization of Vectran 178
10.2.1 Fiber Chemistry 178
10.2.2 Molecular Structure 179
10.2.3 Mechanical Properties 180
10.2.4 Thermal Properties 180
10.2.5 Creep Property 181
10.2.6 Vibration Damping 183
10.2.7 Cut Resistance 184
10.3 Crystal Structure of Vectran 185
10.3.1 Introduction 185
10.3.2 Crystal Structural Change on Annealing Process 185
10.4 Composite Application of Vectran 188
10.4.1 Introduction 188
10.4.2 Textile Fibers for Flexible Composite 189
10.4.3 Flex/Fold Fatigue Resistance of Vectran 191
10.4.4 Dimensional Stability of Vectran 193
10.4.5 Environmental Stability of Vectran 194
10.5 Conclusion 195
References 195
Chapter 11: Zylon: Super Fiber from Lyotropic Liquid Crystal of the Most Rigid Polymer 197
11.1 History 197
11.2 PBO Chemistry 200
11.2.1 PBZ Chemistry 200
11.2.2 PBO Chemistry 201
11.2.2.1 Monomer Chemistry 201
11.2.2.2 Polymerization 201
11.2.3 Alternative Chemistry for PBO 202
11.3 Features of Zylon 202
11.3.1 Mechanical Properties 203
11.3.2 Compressive Strength 205
11.3.3 Fatigue 207
11.3.4 Flame Resistance 208
11.3.5 Thermal Conductivity 208
11.3.6 Degradation Under Hydrolytic Condition 210
11.3.7 Photoaging 211
11.4 Fiber Processing 212
11.4.1 Spinning Dope 213
11.4.2 Fiber Processing 215
11.4.2.1 Spin-Drawing 215
11.4.2.2 Coagulation 216
11.4.2.3 Washing and Neutralization 216
11.4.2.4 Drying 218
11.5 Applications 218
11.5.1 Heat-Resistant Materials 218
11.5.2 Fiber-Reinforced Composites 218
11.5.3 Rope and Cables 219
11.6 Conclusions 220
References 221
Part III: Functional and Speciality Man-Made Fibers 223
Chapter 12: Overview of Functional and Speciality Fibers 224
12.1 Introduction 224
12.2 Production Amount of Man-Made Fibers [5] 226
12.3 Modification Technologies of Man-Made Fibers [7, 8] 228
12.3.1 Technology for Chemical Modification of Polymers 229
12.3.2 Fiber Modification Technology 229
12.3.3 Post-processing Modification Technology 231
12.4 Biomimetic Man-Made Fibers Having Specific Structures and Functions [7, 8] 234
12.5 Conclusion 236
References 236
Chapter 13: High-Touch Fibers and ``Shin-gosen´´ (Newly Innovated Fabrics) 237
13.1 Technology of High Value-Added Synthetic Fibers 237
13.2 Development of Silky Polyester 238
13.2.1 The First Stage: Imitate the Shape of Silk Fiber 239
13.2.2 The Second Stage: Imitate the Features of Silk Fabrics 240
13.2.3 The Third Stage: Imitating the View of Nature and the Inhomogeneousness of Silk Fabrics 241
13.2.4 From the Natural-Fiber-Like Materials to the Synthetic Fiber Original Materials 241
13.3 Development of Ultrafine Fibers and Their Evolution 242
13.3.1 Manufacturing Process of Ultrafine Fibers 242
13.3.2 Further Evolution of the Ultrafine Fibers 243
13.4 The Birth of ``Shin-gosen´´ 244
13.4.1 What Is ``Shin-gosen´´? 244
13.4.1.1 New Silky Materials 245
13.4.1.2 Slightly Nap-Raised (Peach Face) Materials 245
13.4.1.3 Dry-Touch Materials 245
13.4.1.4 New Worsted Materials 247
13.4.2 Higher-Order Processing Technology Which Supported Shin-gosen 248
References 249
Chapter 14: Moisture and Water Control Man-Made Fibers 250
14.1 Why Moisture and/or Water Absorption Is Important for Fibers 251
14.2 Moisture and Water Absorption of Fibers 252
14.3 Moisture Absorption Fibers and Moisture Absorption Modification Methods 255
14.3.1 Cross-Linked Acrylate Fiber MOISCARER (Toyobo) 256
14.3.2 High Moisture-Absorbing Nylon Fiber QUUPR (Toray) 256
14.3.3 Sheath-Core Structural Nylon Fiber Demonstrating Moisture Absorption and Release HYGRAR (Unitika) 257
14.3.4 Sheath-Core Structure Conjugated Fiber SOFISTAR (Kuraray) 257
14.4 Water Absorption Fibers and Water Absorption Modification Methods 259
14.5 Composite Structures of Yarns and Knitted or Woven Fabrics 262
References 263
Chapter 15: Heat-Controllable Man-Made Fibers 264
15.1 Methods for Imparting Heat-Retaining Ability 264
15.2 Units of Heat Retention 265
15.3 Heat-Retaining Materials 265
15.3.1 Thermal Conduction 265
15.3.2 Radiation 266
15.3.3 Thermal Storage of Solar Energy 267
15.3.4 Response to Temperature Change 269
15.3.5 Hygroscopic Exotherm 269
15.3.6 Phase Change 271
References 271
Part IV: Ultrafine and Nano Fibers 273
Chapter 16: Nanofibers 274
16.1 Introduction [1, 2] 274
16.2 Nanospinnings [1, 2] 276
16.2.1 Electrospinning 277
16.2.2 Novel Electrospinning [3, 4] 277
16.2.3 Melt Air Spinning [3, 4] 280
16.3 Potential Applications [1] 281
16.4 Conclusions 283
References 284
Chapter 17: Nanofibers by Conjugated Spinning 285
17.1 Introduction 285
17.2 Spinning Method for Microfiber 286
17.2.1 Spinning Method of Filament Type 286
17.2.2 Spinning Method of Web Type 287
17.3 Nanofiber Technology by Conjugated Spinning 288
17.3.1 Nanofiber Technology Using Conjugated Spinning by Blend Spinning 288
17.3.2 Nanofiber Technology Using Conjugated Spinning by Spinneret Technology 290
17.4 Conclusion 295
Chapter 18: Cellulose Nanofibers as New Bio-Based Nanomaterials 296
18.1 Historical Background 296
18.2 TEMPO-Mediated Oxidation of Cellulose 298
18.3 Characteristics of TEMPO-Oxidized Wood Celluloses 301
18.4 Preparation of TEMPO-Oxidized Cellulose Nanofibers (TOCNs) 304
18.5 Characterization of TEMPO-Oxidized Cellulose Nanofibers 305
18.6 Properties of TOCN-Containing Composite Materials 306
18.7 Conclusions 308
References 309
Chapter 19: Forefront of Nanofibers: High Strength Fibers and Optoelectronic Applications 311
19.1 Introduction 311
19.2 High Strength Fibers 312
19.3 Carbon Nanofiber Networks for Electronic Applications 315
19.4 Non-carbon Nanofiber Networks for Optoelectronic Applications 316
19.5 Summary and Perspective 319
References 319
Part V: Carbon Fibers 322
Chapter 20: Carbon Fiber 323
20.1 Introduction 323
20.2 Properties and Production Methods of Carbon Fiber 324
20.2.1 General Properties of Carbon Fiber 324
20.2.2 Production Methods for Carbon Fiber 324
20.2.2.1 PAN-Based Carbon Fiber 324
20.2.2.2 Pitch-Based Carbon Fiber 326
20.2.3 Commercialization of Carbon Fiber 327
20.2.3.1 Commercialization of PAN-Based Carbon Fiber 327
20.2.3.2 Commercialization of Pitch-Based Carbon Fiber 327
20.3 Improvement of the Performance of Carbon Fiber 328
20.3.1 Basic Structure of Carbon Fiber 328
20.3.2 Improvement of the Performance of PAN-Based Carbon Fiber 329
20.4 Production of CFRP from Carbon Fiber 330
20.4.1 Importance of Matrix Resin in CFRP 330
20.4.2 Production of Carbon Fiber Temporary Materials 330
20.5 The Application of Carbon Fibers 332
20.5.1 Sports and Leisure 332
20.5.2 Aircraft 332
20.5.2.1 History of CFRP Application 332
20.5.2.2 Production Method of Aircraft Elements 332
20.5.2.3 Development of High-Impact Resistance Composite Materials 333
20.5.2.4 Novel CFRP Molding Process 334
20.5.3 Automobile 336
20.5.4 Electronic Devices 336
20.5.5 Others 336
20.6 Carbon Fiber Composite Material and Global Environment 336
20.6.1 Life Cycle Assessment 336
20.6.2 Recycling 337
20.7 Summary 338
References 338
Chapter 21: Pitch-Based Carbon Fibers 339
21.1 Introduction 339
21.2 Classification of the Pitch-Based Carbon Fibers [5] 340
21.3 Production Method of the Pitch-Based Carbon Fibers 341
21.3.1 Pitch Treatment Process 341
21.3.2 Spinning Process 342
21.3.3 Infusibilization Process 344
21.3.4 Carbonization, Graphitization, and Surface Treatment Processes 345
21.4 The Structure and Properties of Pitch-Based Carbon Fibers 345
21.4.1 Characteristics and New Application Developments of Low-Modulus Carbon Fibers 347
21.4.2 High Tensile Modulus and High Thermal Conductivity Carbon Fibers 348
21.5 Closing Remarks 349
References 350
Chapter 22: Life Cycle Assessment of Carbon Fiber-Reinforced Plastic 351
22.1 Introduction 351
22.2 Life Cycle Inventory and Mechanical Properties of Carbon Fiber 352
22.3 Fuel Saving Through Weight Reduction 353
22.3.1 LCA for Carbon Fiber-Reinforced Plastic (CFRP) Plane 355
22.3.2 LCA for Carbon Fiber-Reinforced Plastic (CFRP) Automotive 356
References 357
Chapter 23: Recycling Technologies of Carbon Fiber Composite Materials 358
23.1 Introduction 358
23.2 Classification of Carbon Fiber Recycling Methods 359
23.3 Comparison of CFRP Recycling Technologies 359
23.4 JCMA Recycling Activities 361
23.5 JCMA Recycled Carbon Fiber Pilot Plant 363
23.6 Effect of Carbon Fiber Recycling on Environmental Impact 364
23.7 Properties of Recycled Milled Carbon Fiber 364
23.8 Future Tasks 365
23.9 Conclusions 366
References 366
Part VI: Nonwovens 367
Chapter 24: Current Status and Future Outlook for Nonwovens in Japan 368
24.1 Definition of Nonwovens 368
24.2 Manufacturing Method of Nonwovens 369
24.2.1 Web-Forming Method 369
24.2.1.1 Wet-Laying Process 370
24.2.1.2 Air-Laying Process 370
24.2.1.3 Dry-Laying Process 371
24.2.1.4 Spunbonding Method 372
24.2.1.5 Melt-Blowing Method 372
24.2.1.6 Flash Spinning Method 373
24.2.1.7 Tow Opening Method 374
24.2.1.8 Film-Drawing Method 374
24.2.1.9 Electro-spinning Method 374
24.2.2 Web-Bonding Method 375
24.2.2.1 Chemical (Binder) Bonding 375
24.2.2.2 Thermal Bonding 376
24.2.2.3 Needle Punching 376
24.2.2.4 Hydroentangling (Spunlace Bonding) 377
24.2.2.5 Stitch Bonding 378
24.3 Applications of Nonwovens 378
24.3.1 Protective Wear 379
24.3.2 Medical Care 379
24.3.2.1 Medical Site 379
24.3.2.2 Nonmedical Sites 380
24.3.3 Architecture 380
24.3.4 Civil Engineering 381
24.3.5 Vehicle 381
24.3.6 Hygiene 382
24.3.7 Wipes 382
24.3.8 Filter 382
24.3.9 Agriculture and Horticulture 384
24.3.10 Artificial Leather 384
24.3.11 Others 385
Chapter 25: Bicomponent Polyester Fibers for Nonwovens 387
25.1 Introduction 387
25.2 History of Bicomponent Fibers 388
25.3 Sheath-Core Bicomponent Polyester Staple Fibers, MELTY, and CASVEN 389
25.3.1 MELTY 390
25.3.2 CASVEN 391
25.3.2.1 Molecular Designing 391
25.3.2.2 Properties and Potential Applications 393
25.4 Side-by-Side Bicomponent Polyester Staple Fibers, ``38F,´´ ``H38F,´´and ``C-81´´ 395
25.4.1 Structural Crimp Fiber: ``H38F´´ 395
25.4.2 Latent Crimp Fiber: ``C-81´´ 396
25.5 Sheath-Core Bicomponent Polyester Spunbonded Fabrics: ELEVES 397
25.6 Polylactic Acid Fibers for Nonwovens 397
25.6.1 Introduction 397
25.6.2 Bicomponent PLA Fibers 398
25.6.3 Biodegradable/Compostable Characteristic Features of PLA Fibers 398
References 400
Chapter 26: The World´s Only Cellulosic Continuous Filament Nonwoven ``Bemliese´´ 401
26.1 Introduction 401
26.2 Cuprammonium Solution 403
26.3 Wet Spunbond Process 407
26.4 New Development of Cellulosic Spunbond ``Bemliese´´ 410
26.5 Key Techniques of Microfilament 410
26.6 Priority of Microfilament Bemliese 411
References 412
Chapter 27: Thermoplastic Polyurethane Nonwoven Fabric ``Espansione´´ 413
27.1 Introduction 413
27.2 ``Espansione´´ 414
27.2.1 Manufacturing Process of ``Espansione´´ 414
27.2.2 Technological Features of ``Espansione´´ 414
27.3 ``Espansione FF´´ 417
27.3.1 Technological Features of ``Espansione FF´´ 417
27.3.2 Adhesion Properties of ``Espansione FF´´ 418
27.3.3 Air Permeability of ``Espansione FF´´ 420
27.3.4 Other Properties of ``Espansione FF´´ 421
27.3.5 Various Applications of ``Espansione FF´´ 422
27.4 Conclusion 423
References 423
Part VII: Fibers in Future 424
Chapter 28: Future Man-Made Fiber 425
28.1 Introduction 425
28.2 General Future Forecast 425
28.2.1 Social Structural Change: From Consumption to Sustainable Society 426
28.2.2 Explosive Increase in Global Population 426
28.2.3 Aging Society 426
28.2.4 Limited Global Capacity for Food and Natural Resources 426
28.2.5 Serious Shortage of Water Supply 426
28.2.6 Multi Polarized Society: Economic Bloc and Resource Nationalism 427
28.2.7 Government Conversion: Localization and Autonomic Dispersion Style 427
28.3 Forecast of Future Fiber Trend 427
28.3.1 Coping with Increased Demands 427
28.3.2 Decreasing the Costs of Fiber Production 428
28.3.3 Development of Recycling Technology 428
28.3.4 Expansion of Man-Made Fiber Areas 429
28.3.5 Development of Biomass Fiber 429
28.4 Future Super-Functional Fiber 429
28.4.1 Biomimicked Fiber 430
28.4.2 Design-Driven Cellulose Fiber Products 431
28.4.3 Spider Silk Fiber 432
28.4.4 Intelligent Fiber: Semi Conductor in Fiber with Light-emitting Diode (LED) 433
28.4.5 Sustainability of Future Fiber: Bio-base Fibers 435
28.4.6 Challenges for Fiber Producers in a Sustainable Future 438
28.4.7 The Outlook for Textile Fibers 439
References 441

Erscheint lt. Verlag 16.8.2016
Zusatzinfo XIII, 451 p. 319 illus., 149 illus. in color.
Verlagsort Tokyo
Sprache englisch
Themenwelt Technik Maschinenbau
Schlagworte Dyneema • Fiber Industry in Japan • Functional Fibers • Man-made Fibers • Speciality Fibers • Super Fibers • textile engineering • Vectran • Zylon
ISBN-10 4-431-55203-0 / 4431552030
ISBN-13 978-4-431-55203-1 / 9784431552031
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 19,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich