Cryptology Transmitted Message Protection (eBook)
XXVIII, 364 Seiten
Springer International Publishing (Verlag)
978-3-319-30125-9 (ISBN)
Sergey M. SMOLSKIY is full professor and coordinator of international research programs at Moscow Power Engineering Institute (MPEI) and Deputy Director of the Institute of Radio Engineering and Electronics of MPEI, Moscow, Russia. He got the degree Master of Science in 1970 and the PhD in Radio Electronics in 1973. In 1993 he got the degree doctor of science in engineering and became associated professor.
Boris N. Poizner is a full professor of Radio Physical Dept.,Tomsk State University (TSU). He got the Ph.D. in 1970.
Igor V. IZMAILOV is an Associated Professor of Radio Physical Dept., Tomsk State University (TSU).
Ilia V. ROMANOV is a research engineer of Radio Physical Dept., Tomsk State University (TSU)
Sergey M. SMOLSKIY is full professor and coordinator of international research programs at Moscow Power Engineering Institute (MPEI) and Deputy Director of the Institute of Radio Engineering and Electronics of MPEI, Moscow, Russia. He got the degree Master of Science in 1970 and the PhD in Radio Electronics in 1973. In 1993 he got the degree doctor of science in engineering and became associated professor. Boris N. Poizner is a full professor of Radio Physical Dept.,Tomsk State University (TSU). He got the Ph.D. in 1970.Igor V. IZMAILOV is an Associated Professor of Radio Physical Dept., Tomsk State University (TSU).Ilia V. ROMANOV is a research engineer of Radio Physical Dept., Tomsk State University (TSU)
Acknowledgments 7
Contents 8
About the Authors 13
Abbreviations 19
Introduction 21
1 Deterministic Chaos Phenomenon from the Standpoint of Information Protection Tasks 27
1.1 Principles and Concepts of the Classical Cryptology as the Traditional Strategy of Information Protection 27
1.2 The Optical Vortex as a Product of the Beam Perturbation and the Data Carrier in the Communication System 33
1.3 Examples of Dynamic Systems in Radiophysics and Optics with Complicated Behavior 35
1.3.1 Examples of Radio Physical Systems with Complicated Behavior 35
1.3.2 Designs of Nonlinear Elements 47
1.3.3 The Nonlinear Ring Interferometer as an Example of the Optical System with Complex Behavior 51
1.4 Principles of Information Protection by the Deterministic Chaos 56
1.4.1 General Schemes and Functioning Principles of the Confidential Communication Systems in the Mode of the Dynamic Chaos 60
1.4.2 Examples of Radio Physical Systems for Information Protection 72
1.4.3 Examples of the Application of Deterministic Chaos in Optical System of the Confidential Communication 75
1.4.4 Influence of Disturbing Factors on the Characteristics of the Data Transmission System 80
1.4.5 Classification of Communication Systems Using the Dynamic Chaos 85
1.5 Conclusions 87
2 Radiophysical and Optical Chaotic Oscillators Applicable for Information Protection 97
2.1 The Radio-Electronic Oscillator of the Deterministic Chaos with Nonlinearity in the Form of Parabola Compositions 97
2.1.1 The Structure and the Mathematical Model of the Oscillator 97
2.1.2 The Nonlinear Element: A Structure, a Mathematical Description 101
2.1.3 Analysis of Equilibrium State Stability in the Model of the Deterministic Chaos Oscillator 103
2.2 Simulation of Static and Dynamic Modes of the Deterministic Chaos Oscillator 106
2.2.1 Stability of Equilibrium States 106
2.2.2 Operating Modes in the Deterministic Chaos Oscillator 112
2.3 Modes and Scenarios of Transitions to Chaotic Oscillations in the Radio-Frequency Oscillator of Deterministic Chaos 118
2.3.1 The Breadboard of Deterministic Chaos Oscillator 118
2.3.2 Transition to the Chaos Through the Period Doubling Bifurcation 121
2.3.3 Transition to the Chaos Through Intermittency 122
2.3.4 Transition to the Chaos Through a Collapse of Two-Frequency Oscillating Mode 125
2.3.5 Transition to the Chaos Through a “Semi-Torus” Collapse 127
2.3.6 Bifurcation Diagrams 131
2.4 The Ring Interferometer with the Kerr Nonlinear Medium and Its Modifications as the Deterministic Chaos Oscillators 134
2.4.1 Mathematical Models of Processes in the Nonlinear Ring Interferometer 134
2.4.2 Double-Circuit Nonlinear Ring Interferometer and Models of Processes in It 153
2.4.3 Dynamics in the Ring Interferometer Models 166
2.4.4 The Nonlinear Fiber-Optical Interferometer 176
2.4.5 The Double-Circuit NRI and Structurally Connected NRIs: Prospects for Chaos Generating and Data Processing 182
2.5 Conclusions 186
References 187
3 Radio Electronic System for Data Transmission on the Base of the Chaotic Oscillator with Nonlinearity in the form of Parabola Composition: Modeling and Experiment 193
3.1 Description of the Data Transmission System 193
3.1.1 The Structure of the Data Transmission System on the Base of the Chaotic Oscillator, Its Mathematical Model, and a Quality Criteria 193
3.1.2 Temperature Dependence of the Transfer Characteristics of the Nonlinear Element 198
3.1.3 Temperature Compensation in the Voltage Limiter on the Shottky Diodes and a Choice of the Nonlinear Element Parameters 202
3.2 Numerical Modeling of the Data Transmission System Operation 207
3.2.1 Lack of the Coincidence Influence of the Transmitter and Receiver Parameters on the Data Transmission Quality 209
3.2.2 Temperature Mismatching Influence of the Transmitter and the Receiver on Data Transmission Quality 214
3.2.3 The Role of Noises, Filtering, Level-Discretization in the Communication Channel 219
3.2.4 From Bias Voltage Manipulation in the Oscillator of the Deterministic Chaos to Transmission and Reception of Digital Signals 221
3.3 Description and Characteristics of the Chaotic Communication System Breadboard, Experimental Reception-Transmission of Analog, Digital and Video Signals 225
3.3.1 The Breadboard of the Data Transmission System 226
3.3.2 SNR Measurement in the Laboratory Experiment at Mismatching of the Transmitter and the Receiver Parameters 229
3.4 Experimental Operation Studying of the Communication System with the Complete Chaotic Synchronization 230
3.4.1 Transmission and Reception of Analog, Digital and Video Signals 231
3.4.2 Influence of Data Transmission System Parameters on SNR 234
3.5 Conclusions 238
References 239
4 Single- and Double-Circuit Nonlinear Ring Interferometer as a Cipherer in Optical Systems of Synchronous Chaotic Communications 240
4.1 Confident Communication System Based on NRI 242
4.1.1 Substantiation of the Recovering Possibility for the Signal Made Chaotic by Means of the NRI 242
4.1.2 “Route-Operator Formalism” and Synthesis of the Cryptosystem Structural Scheme 245
4.1.3 Simulation of Secret Transmission of Images: Modes of Deterministic Spatial-Temporal and Spatial Chaos 255
4.1.4 Deciphering Error ?(r, t) as a Wave Process and Its Normalizing Amplitude A? as a Function of Setting Errors of the Decipherer. Evaluation of A? 259
4.1.5 Statistical Characteristics of the Relative Deciphering Error Amplitude ??(r, t): Simulation Data and Theoretical Estimations 262
4.1.6 Imitation of “Cracking” of the Delay Time in NRI 266
4.2 Imitation of the DNRI Parameters Cracking Based on the Correlation Analysis: Discussion of Advantages 274
4.2.1 The Case of Field Transformation in FBL (Time Delay Estimation) 274
4.2.2 Cases with the Field Rotation in the One Feedback Loop with the Same and Various Field Rotations in FBL 275
4.3 Conclusions 279
References 280
5 Optical Vortices in Ring and Non-ring Interferometers and a Model of the Digital Communication System 283
5.1 The Idea of the Singular-Optical Communication System 283
5.2 Nonlinear Ring Interferometer as an Option Detector for the Screw Dislocation Order 286
5.3 Rozhdestvenskiy’s Interferometer as a Vortex Detector 296
5.3.1 A Principle and Description of Vortex Detection with the Help of Rozhdestvenskiy’s Interferometer at Noise Presence 296
5.3.2 Simulation of Rozhdestvenskiy’s Interferometer Operation as a Vortex Detector and Its Characteristics Analysis at Presence of the White (Phase and Amplitude) Noise 302
5.3.3 Influence of the Optical Axes Displacement of the Source and Receiver Beam upon the Relative Intensity Value. Possibility of Optical Vortex Position Finding 306
5.3.4 Determination of the Screw Dislocation Order in the Presence of Beam Distortions Caused by Turbulence 310
5.4 The Data Transmission System on the Basis of the Optical Vortex Detector: The Operation Principle, a Model, Simulation of Turbulence or Noise Influence 323
5.4.1 Coding of the Information Bit by the Relative Intensity Value {/rm I}_{{ r}} or Its Change. Theoretical Backgrounds for Calculations of the Probability of Error in Data Transfer 323
5.4.2 Analysis of the Influence of the Turbulent Screen and Communication System Parameters on the Error in Data Transfer 329
5.5 The Visual Analysis of Phase and Amplitude Distributions of the Input Signal of Vortex Topologic Charge Detector at Presence of the Turbulence 342
5.6 Conclusions 352
References 353
6 Variety of Nonlinear Type in the Chaotic Oscillator and Structure Organization of the Chaotic Communication System as a Way to Increase the Confidence Degree 357
6.1 A Variety of Structural Organization of Nonlinear-Dynamic Systems of Confidential Communication and Its Classification 357
6.2 Elements with Nonlinear Transfer Characteristic: Universality of Its “Constructions” and a Concept of Self-controlled Nonlinearity 363
6.3 Conclusions 373
References 374
7 Nonlinear-Dynamic Cryptology Versus Steganography and Cryptografics 376
References 378
Index 379
Erscheint lt. Verlag | 24.6.2016 |
---|---|
Reihe/Serie | Signals and Communication Technology | Signals and Communication Technology |
Zusatzinfo | XXVIII, 364 p. 225 illus., 19 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik |
Mathematik / Informatik ► Mathematik | |
Technik ► Bauwesen | |
Technik ► Nachrichtentechnik | |
Schlagworte | Chaotic Communication in Optics • Digital Communication System • Information protection • Nature of Nonlinearity • Nnlinear Cyptology • Optical System of Synchronous Chaotic Communication • Optical Vortices Communications • Optical Vortices in Non-ring Interferometer • Simulation of Ciphering and Deciphering |
ISBN-10 | 3-319-30125-X / 331930125X |
ISBN-13 | 978-3-319-30125-9 / 9783319301259 |
Haben Sie eine Frage zum Produkt? |
Größe: 15,3 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich