Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Reconstruction and Analysis of 3D Scenes (eBook)

From Irregularly Distributed 3D Points to Object Classes

(Autor)

eBook Download: PDF
2016 | 1st ed. 2016
XXII, 233 Seiten
Springer International Publishing (Verlag)
978-3-319-29246-5 (ISBN)

Lese- und Medienproben

Reconstruction and Analysis of 3D Scenes - Martin Weinmann
Systemvoraussetzungen
171,19 inkl. MwSt
(CHF 167,25)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This unique work presents a detailed review of the processing and analysis of 3D point clouds. A fully automated framework is introduced, incorporating each aspect of a typical end-to-end processing workflow, from raw 3D point cloud data to semantic objects in the scene. For each of these components, the book describes the theoretical background, and compares the performance of the proposed approaches to that of current state-of-the-art techniques. Topics and features: reviews techniques for the acquisition of 3D point cloud data and for point quality assessment; explains the fundamental concepts for extracting features from 2D imagery and 3D point cloud data; proposes an original approach to keypoint-based point cloud registration; discusses the enrichment of 3D point clouds by additional information acquired with a thermal camera, and describes a new method for thermal 3D mapping; presents a novel framework for 3D scene analysis.

Reconstruction and Analysis of 3D Scenes 5
Foreword 7
Preface 9
Target Audience 9
Difficulty 10
Organization of the Content 10
Abstract 12
Kurzfassung 12
Note 14
Acknowledgments 15
Contents 17
1 Introduction 21
1.1 Goals 23
1.2 Challenges and Main Contributions 25
1.3 Publications 27
1.4 The Proposed Framework 31
1.5 Book Outline 33
References 34
2 Preliminaries of 3D Point Cloud Processing 36
2.1 From the Real World to a Scene and Its Representation 36
2.2 On Points and Clouds, and Point Clouds 38
2.3 Point Cloud Acquisition 39
2.3.1 Passive Techniques 40
2.3.2 Active Techniques 41
2.4 Generation of 2D Image Representations for 3D Point Clouds 43
2.5 Point Quality Assessment 44
2.5.1 Influencing Factors and Related Work 45
2.5.2 Filtering Based on Intensity Information 46
2.5.3 Filtering Based on Range Reliability 47
2.5.4 Filtering Based on Local Planarity 48
2.5.5 A Qualitative Comparison of Different Measures 50
2.5.6 A Quantitative Comparison of Different Measures 52
2.6 Conclusions 54
References 55
3 A Brief Survey on 2D and 3D Feature Extraction 58
3.1 What Is a Feature? 58
3.2 2D Feature Extraction 59
3.2.1 Overall Appearance 60
3.2.2 Pixel Attributes 61
3.2.3 Texture 61
3.2.4 Shape 62
3.2.5 Local Features 63
3.3 3D Feature Extraction 64
3.3.1 Point Attributes 64
3.3.2 Shape 65
3.3.3 Local Features 66
3.4 Discussion 67
3.5 Conclusions 69
References 70
4 Point Cloud Registration 73
4.1 Motivation and Contributions 74
4.2 Related Work 77
4.2.1 Feature Extraction 77
4.2.2 Keypoint-Based Point Cloud Registration 81
4.3 A Novel Framework for Keypoint-Based Point Cloud Registration 82
4.3.1 2D Image Representations 82
4.3.2 Point Quality Assessment 84
4.3.3 Feature Extraction and Matching 84
4.3.4 Forward Projection of 2D Keypoints to 3D Space 90
4.3.5 Correspondence Weighting 91
4.3.6 Point Cloud Registration 95
4.4 Experimental Results 103
4.4.1 Dataset 103
4.4.2 Experiments 104
4.4.3 Results 105
4.5 Discussion 116
4.6 Conclusions 122
References 123
5 Co-Registration of 2D Imagery and 3D Point Cloud Data 129
5.1 Motivation and Contributions 130
5.2 Related Work 132
5.2.1 Indirect Co-Registration of 3D Point Clouds and Thermal Infrared Images 133
5.2.2 Direct Co-Registration of 3D Point Clouds and Thermal Infrared Images 134
5.2.3 Direct Generation of 3D Point Clouds from Thermal Infrared Images 134
5.3 A Novel Framework for Keypoint-Based 3D Mapping of Thermal Information 135
5.3.1 Radiometric Correction 135
5.3.2 Geometric Calibration 136
5.3.3 Feature Extraction and Matching 139
5.3.4 Keypoint-Based Co-Registration of 3D and 2D Information 141
5.4 Experimental Results 146
5.4.1 Data Acquisition 146
5.4.2 Experiments 148
5.4.3 Results 148
5.5 Discussion 149
5.6 Conclusions 155
References 156
6 3D Scene Analysis 159
6.1 Motivation and Contributions 160
6.2 Related Work 163
6.2.1 Neighborhood Selection: Single-Scale Representation Versus Multi-Scale Representation 163
6.2.2 Feature Extraction: Sampled Features Versus Interpretable Features 166
6.2.3 Feature Selection: All Features Versus Relevant Features 167
6.2.4 Classification: Individual Feature Vectors Versus Contextual Information 169
6.3 A Novel Framework for 3D Scene Analysis 171
6.3.1 Neighborhood Selection 172
6.3.2 Feature Extraction 177
6.3.3 Feature Selection 183
6.3.4 Classification 188
6.4 Extension Toward Large-Scale 3D Scene Analysis 193
6.5 Extension by Involving Contextual Information 195
6.5.1 Association Potentials 197
6.5.2 Interaction Potentials 197
6.5.3 Definition of the Neighborhood 198
6.5.4 Training and Inference 199
6.6 Experimental Results 200
6.6.1 Datasets 200
6.6.2 Experiments 203
6.6.3 Results 206
6.7 Discussion 226
6.7.1 Our Main Framework 227
6.7.2 Extension Toward Data-Intensive Processing 231
6.7.3 Extension by Involving Contextual Information 233
6.8 Conclusions 234
References 235
7 Conclusions and Future Work 243
Index 248

Erscheint lt. Verlag 17.3.2016
Zusatzinfo XXII, 233 p. 81 illus., 69 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik
Schlagworte 2D Feature Extraction • 3D Feature Extraction • 3D Scene Analysis and Interpretation • classification • computer vision • Feature Importance and Selection • filtering • Laser scanning • Lidar • Photogrammetry • point cloud • Point Cloud Registration • Range Camera • Remote Sensing/Photogrammetry • time-of-flight • Visual Features
ISBN-10 3-319-29246-3 / 3319292463
ISBN-13 978-3-319-29246-5 / 9783319292465
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 9,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
CHF 37,95
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
CHF 16,95