Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Big Visual Data Analysis (eBook)

Scene Classification and Geometric Labeling
eBook Download: PDF
2016 | 1st ed. 2016
X, 122 Seiten
Springer Singapore (Verlag)
978-981-10-0631-9 (ISBN)

Lese- und Medienproben

Big Visual Data Analysis - Chen Chen, Yuzhuo Ren, C.-C. Jay Kuo
Systemvoraussetzungen
53,49 inkl. MwSt
(CHF 52,25)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book offers an overview of traditional big visual data analysis approaches and provides state-of-the-art solutions for several scene comprehension problems, indoor/outdoor classification, outdoor scene classification, and outdoor scene layout estimation. It is illustrated with numerous natural and synthetic color images, and extensive statistical analysis is provided to help readers visualize big visual data distribution and the associated problems. Although there has been some research on big visual data analysis, little work has been published on big image data distribution analysis using the modern statistical approach described in this book. By presenting a complete methodology on big visual data analysis with three illustrative scene comprehension problems, it provides a generic framework that can be applied to other big visual data analysis tasks.

Chen Chen received his B.S. degree in Electrical Engineering from Beijing University of Posts and Telecommunications (BUPT) in 2010. He received his M.S. degree in Electrical Engineering from University of Southern California (USC) in 2012. At the same year, he joined the Media Communication Lab led by Professor Kuo in University of Southern California (USC), where he is pursuing her Ph.D degree in Electrical Engineering and serving as a research assistant. His research interests include image classification, image tagging and image/video processing.
Yu-Zhuo Ren received her B.S. degree in Hebei University of Technology (HUT), China, in 2011 and the M.S. degree in Electrical Engineering from University of Southern California (USC) in 2013. She is now working as a research assistant in the Media Communication Lab led by Professor Kuo. Her research interests include image understanding related problems, in the field of computer vision and machine learning.
C.-C. Jay Kuo Dr. C.-C. Jay Kuo received the B.S. degree from the National Taiwan University, Taipei, in 1980 and the M.S. and Ph.D. degrees from the Massachusetts Institute of Technology, Cambridge, in 1985 and 1987, respectively, all in Electrical Engineering. From October 1987 to December 1988, he was Computational and Applied Mathematics Research Assistant Professor in the Department of Mathematics at the University of California, Los Angeles. Since January 1989, he has been with the University of Southern California (USC).
He is presently Director of the Multimedia Communication Lab. and Professor of Electrical Engineering and Computer Science at the USC. His research interests are in the areas of multimedia data compression, communication and networking, multimedia content analysis and modeling, and information forensics and security. Dr. Kuo has guided 119 students to their Ph.D. degrees and supervised 23 postdoctoral research fellows. Currently, his research group at the USC has around 30 Ph.D. students, which is one of the largest academic research groups in multimedia technologies. He is coauthor of about 220 journal papers, 850 conference papers and 12 books. He delivered over 550 invited lectures in conferences, research institutes, universities and companies.
This book offers an overview of traditional big visual data analysis approaches and provides state-of-the-art solutions for several scene comprehension problems, indoor/outdoor classification, outdoorscene classification, and outdoor scene layout estimation. It is illustrated with numerous naturaland synthetic color images,and extensive statistical analysis is provided to help readers visualize big visualdata distribution and the associatedproblems. Although therehas been some research on big visual data analysis, little workhas been published on big image data distribution analysis using the modernstatistical approach described in thisbook. By presenting a complete methodology on big visual data analysis withthree illustrative scene comprehensionproblems, it provides ageneric framework that canbe applied to other big visual data analysis tasks.

Chen Chen received his B.S. degree in Electrical Engineering from Beijing University of Posts and Telecommunications (BUPT) in 2010. He received his M.S. degree in Electrical Engineering from University of Southern California (USC) in 2012. At the same year, he joined the Media Communication Lab led by Professor Kuo in University of Southern California (USC), where he is pursuing her Ph.D degree in Electrical Engineering and serving as a research assistant. His research interests include image classification, image tagging and image/video processing. Yu-Zhuo Ren received her B.S. degree in Hebei University of Technology (HUT), China, in 2011 and the M.S. degree in Electrical Engineering from University of Southern California (USC) in 2013. She is now working as a research assistant in the Media Communication Lab led by Professor Kuo. Her research interests include image understanding related problems, in the field of computer vision and machine learning. C.-C. Jay Kuo Dr. C.-C. Jay Kuo received the B.S. degree from the National Taiwan University, Taipei, in 1980 and the M.S. and Ph.D. degrees from the Massachusetts Institute of Technology, Cambridge, in 1985 and 1987, respectively, all in Electrical Engineering. From October 1987 to December 1988, he was Computational and Applied Mathematics Research Assistant Professor in the Department of Mathematics at the University of California, Los Angeles. Since January 1989, he has been with the University of Southern California (USC). He is presently Director of the Multimedia Communication Lab. and Professor of Electrical Engineering and Computer Science at the USC. His research interests are in the areas of multimedia data compression, communication and networking, multimedia content analysis and modeling, and information forensics and security. Dr. Kuo has guided 119 students to their Ph.D. degrees and supervised 23 postdoctoral research fellows. Currently, his research group at the USC has around 30 Ph.D. students, which is one of the largest academic research groups in multimedia technologies. He is coauthor of about 220 journal papers, 850 conference papers and 12 books. He delivered over 550 invited lectures in conferences, research institutes, universities and companies.

Introduction.-
Scene Understanding Datasets.- Indoor/Outdoor classification with Multiple
Experts.- Outdoor Scene Classification Using Labeled Segments.- Global-Attributes
Assisted Outdoor Scene Geometric Labeling.- Conclusion and Future Work.

Erscheint lt. Verlag 24.2.2016
Reihe/Serie SpringerBriefs in Electrical and Computer Engineering
SpringerBriefs in Electrical and Computer Engineering
SpringerBriefs in Signal Processing
SpringerBriefs in Signal Processing
Zusatzinfo X, 122 p. 94 illus., 12 illus. in color.
Verlagsort Singapore
Sprache englisch
Themenwelt Informatik Grafik / Design Digitale Bildverarbeitung
Informatik Software Entwicklung User Interfaces (HCI)
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Graphentheorie
Technik Elektrotechnik / Energietechnik
Schlagworte Big Visual Data Analysis • Indoor/Outdoor Classification • Outdoor Scene Classification • Outdoor Scene Geometric Labeling • Scene Understanding
ISBN-10 981-10-0631-8 / 9811006318
ISBN-13 978-981-10-0631-9 / 9789811006319
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 10,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Discover the smart way to polish your digital imagery skills by …

von Bradley

eBook Download (2024)
Packt Publishing (Verlag)
CHF 29,30
Explore powerful modeling and character creation techniques used for …

von Lukas Kutschera

eBook Download (2024)
Packt Publishing (Verlag)
CHF 42,20
Generate creative images from text prompts and seamlessly integrate …

von Margarida Barreto

eBook Download (2024)
Packt Publishing (Verlag)
CHF 31,65