Time Series Analysis by State Space Methods
Seiten
2001
Clarendon Press (Verlag)
978-0-19-852354-3 (ISBN)
Clarendon Press (Verlag)
978-0-19-852354-3 (ISBN)
- Titel erscheint in neuer Auflage
- Artikel merken
Zu diesem Artikel existiert eine Nachauflage
This book presents a comprehensive treatment of the state space approach to time series analysis.
This excellent text provides a comprehensive treatment of the state space approach to time series analysis. The distinguishing feature of state space time series models is that observations are regarded as made up of distinct components such as trend, seasonal, regression elements and disturbence terms, each of which is modelled separately. The techniques that emerge from this approach are very flexible and are capable of handling a much wider range of problems than the main analytical system currently in use for time series analysis, the Box-Jenkins ARIMA system. The book provides an excellent source for the development of practical courses on time series analysis.
This excellent text provides a comprehensive treatment of the state space approach to time series analysis. The distinguishing feature of state space time series models is that observations are regarded as made up of distinct components such as trend, seasonal, regression elements and disturbence terms, each of which is modelled separately. The techniques that emerge from this approach are very flexible and are capable of handling a much wider range of problems than the main analytical system currently in use for time series analysis, the Box-Jenkins ARIMA system. The book provides an excellent source for the development of practical courses on time series analysis.
PART I - THE LINEAR GAUSSIAN STATE SPACE MODELS; PREFACE TO PART I ; 1. Introduction ; 2. Local level model ; 3. Linear Gaussian state space models ; 4. Filtering, smoothing and forecasting ; 5. Initialisation of filter and smoother ; 6. Further computational aspects ; 7. Maximum likelihood estimation ; 8. Bayesian analysis ; 9. Illustrations of the use of the linear Gaussian model ; PART II - NON-GAUSSIAN AND NONLINEAR STATE SPACE MODELS; PREFACE TO PART II ; 10. Non-Gaussian and nonlinear state space models ; 11. Importance sampling ; 12. Analysis from a classical standpoint ; 13. Analysis from a Bayesian standpoint ; 14. Non-Gaussian and nonlinear illustrations ; References ; Author Index ; Subject Index
Erscheint lt. Verlag | 21.6.2001 |
---|---|
Reihe/Serie | Oxford Statistical Science Series ; No.24 |
Zusatzinfo | numerous line figures |
Verlagsort | Oxford |
Sprache | englisch |
Maße | 160 x 242 mm |
Gewicht | 539 g |
Themenwelt | Mathematik / Informatik ► Mathematik |
Technik ► Maschinenbau | |
ISBN-10 | 0-19-852354-8 / 0198523548 |
ISBN-13 | 978-0-19-852354-3 / 9780198523543 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2022)
Springer Gabler (Verlag)
CHF 48,95
Von Logik und Mengenlehre bis Zahlen, Algebra, Graphen und …
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90
fundiert, vielseitig, praxisnah
Buch | Softcover (2021)
Springer Berlin (Verlag)
CHF 46,15