Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Statistical Modeling and Machine Learning for Molecular Biology - Alan Moses

Statistical Modeling and Machine Learning for Molecular Biology

(Autor)

Buch | Softcover
264 Seiten
2016
Chapman & Hall/CRC (Verlag)
978-1-4822-5859-2 (ISBN)
CHF 99,45 inkl. MwSt
The book covers several of the major data analysis techniques used to analyze data from high-throughput molecular biology and genomics experiments. It also explains the major concepts behind most of the popular techniques and examines some of the simpler techniques in detail.
Molecular biologists are performing increasingly large and complicated experiments, but often have little background in data analysis. The book is devoted to teaching the statistical and computational techniques molecular biologists need to analyze their data. It explains the big-picture concepts in data analysis using a wide variety of real-world molecular biological examples such as eQTLs, ortholog identification, motif finding, inference of population structure, protein fold prediction and many more. The book takes a pragmatic approach, focusing on techniques that are based on elegant mathematics yet are the simplest to explain to scientists with little background in computers and statistics.

Alan M Moses is currently Associate Professor and Canada Research Chair in Computational Biology in the Departments of Cell & Systems Biology and Computer Science at the University of Toronto. His research touches on many of the major areas in computational biology, including DNA and protein sequence analysis, phylogenetic models, population genetics, expression profiles, regulatory network simulations and image analysis.

Introduction. Statistical modeling. Statistics and probability. Multiple testing. Multivariate statistics and parameter estimation. Clustering. Distance-based. Gaussian mixture models. Simple linear regression. Multiple regression and generalized linear models. Regularization. Linear classification. Non-linear classification. Evaluating classifiers and ensemble methods. Correlated data in one dimension. Hidden-Markov models. Local regression.

Erscheinungsdatum
Reihe/Serie Chapman & Hall/CRC Computational Biology Series
Zusatzinfo 50 Illustrations, black and white
Sprache englisch
Maße 156 x 234 mm
Gewicht 408 g
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Naturwissenschaften Biologie Genetik / Molekularbiologie
Technik Umwelttechnik / Biotechnologie
ISBN-10 1-4822-5859-5 / 1482258595
ISBN-13 978-1-4822-5859-2 / 9781482258592
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
CHF 39,20