Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Lie Groups and Geometric Aspects of Isometric Actions (eBook)

eBook Download: PDF
2015 | 2015
X, 213 Seiten
Springer International Publishing (Verlag)
978-3-319-16613-1 (ISBN)

Lese- und Medienproben

Lie Groups and Geometric Aspects of Isometric Actions - Marcos M. Alexandrino, Renato G. Bettiol
Systemvoraussetzungen
90,94 inkl. MwSt
(CHF 88,85)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book provides quick access to the theory of Lie groups and isometric actions on smooth manifolds, using a concise geometric approach. After a gentle introduction to the subject, some of its recent applications to active research areas are explored, keeping a constant connection with the basic material. The topics discussed include polar actions, singular Riemannian foliations, cohomogeneity one actions, and positively curved manifolds with many symmetries. This book stems from the experience gathered by the authors in several lectures along the years and was designed to be as self-contained as possible. It is intended for advanced undergraduates, graduate students and young researchers in geometry and can be used for a one-semester course or independent study.

Marcos M. Alexandrino is an Associate Professor at the Institute of Mathematics and Statistics of the University of São Paulo, Brazil. He did his PhD at Pontifical Catholic University of Rio de Janeiro, Brazil, with studies at the University of Cologne, in Germany. His research is on the field of Differential Geometry, more specifically on singular Riemannian foliations and isometric actions.

Renato G. Bettiol is a Hans Rademacher Instructor of Mathematics at the University of Pennsylvania, USA. He did his PhD at the University of Notre Dame, USA. His research is on the field of Differential Geometry, more specifically on Riemannian geometry and geometric analysis.

Marcos M. Alexandrino is an Associate Professor at the Institute of Mathematics and Statistics of the University of São Paulo, Brazil. He did his PhD at Pontifical Catholic University of Rio de Janeiro, Brazil, with studies at the University of Cologne, in Germany. His research is on the field of Differential Geometry, more specifically on singular Riemannian foliations and isometric actions.Renato G. Bettiol is a Hans Rademacher Instructor of Mathematics at the University of Pennsylvania, USA. He did his PhD at the University of Notre Dame, USA. His research is on the field of Differential Geometry, more specifically on Riemannian geometry and geometric analysis.

Preface 8
Contents 10
Part I Lie Groups 12
1 Basic Results on Lie Groups 13
1.1 Lie Groups and Lie Algebras 13
1.2 Lie Subgroups and Lie Homomorphisms 17
1.3 Exponential Map and Adjoint Representation 23
1.4 Closed Subgroups and More Examples 28
2 Lie Groups with Bi-invariant Metrics 36
2.1 Basic Facts of Riemannian Geometry 36
2.2 Bi-invariant Metrics 47
2.3 Killing Form and Semisimple Lie Algebras 50
2.4 Splitting Lie Groups with Bi-invariant Metrics 54
Part II Isometric Actions 57
3 Proper and Isometric Actions 58
3.1 Proper Actions and Fiber Bundles 58
3.2 Slices and Tubular Neighborhoods 71
3.3 Isometric Actions 76
3.4 Principal Orbits 80
3.5 Orbit Types 83
4 Adjoint and Conjugation Actions 92
4.1 Maximal Tori and Polar Actions 92
4.2 Normal Slices of Conjugation Actions 99
4.3 Roots of a Compact Lie Group 100
4.4 Weyl Group 106
4.5 Dynkin Diagrams 109
5 Polar Foliations 115
5.1 Definitions and First Examples 115
5.2 Holonomy and Orbifolds 117
5.3 Surgery and Suspension of Homomorphisms 122
5.4 Differential and Geometric Aspects of Polar Foliations 123
5.5 Transnormal and Isoparametric Maps 132
5.6 Perspectives 141
6 Low Cohomogeneity Actions and Positive Curvature 144
6.1 Cheeger Deformation 144
6.2 Compact Homogeneous Spaces 150
6.3 Cohomogeneity One Actions 162
6.4 Positive and Nonnegative Curvature via Symmetries 176
AppendixA Rudiments of Smooth Manifolds 189
A.1 Smooth Manifolds 189
A.2 Vector Fields 191
A.3 Foliations and the Frobenius Theorem 194
A.4 Differential Forms, Integration, and de Rham Cohomology 196
References 202
Index 211

Erscheint lt. Verlag 22.5.2015
Zusatzinfo X, 213 p. 14 illus.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
Technik
Schlagworte Cheeger deformation • Cohomogeneity one action • Frobenius theorem • isometric actions • Lie Algebras • Lie groups • maximal tori • polar actions • positive curvature • proper actions • Riemannian Geometry • Weyl Group
ISBN-10 3-319-16613-1 / 3319166131
ISBN-13 978-3-319-16613-1 / 9783319166131
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 3,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich