Imaging and Manipulation of Adsorbates Using Dynamic Force Microscopy (eBook)
XX, 154 Seiten
Springer International Publishing (Verlag)
978-3-319-17401-3 (ISBN)
Philip Moriarty is a Professor of Physics and an Engineering & Physical Sciences Research Council (EPSRC) Fellow in the School of Physics and Astronomy, University of Nottingham. His research interests span a number of topical themes in nanometre scale science with a particular recent focus on single atom/molecule imaging and manipulation using dynamic force microscopy. In addition to his coordination of a number of nanoscience-focussed European networks (including, most recently, ACRITAS(Actuation and Characterisation at the Single Bond Limit)), he was Chair of the Institute of Physics Nanoscale Physics and Technology Group from 2009 - 2012, is currently a member of the Science Board of the UK Institute of Physics, and was a member of the EPSRC Strategic Advisory Team for Physics from 2005 - 2006.
Moriarty has a keen interest in outreach activities and both science and higher education funding policy. In addition to participating in a number of research council-funded public engagement projects (including Giants of the Infinitesimal), and his membership of the Steering Committee of the Council for the Defence of British Universities, he has interacted with national and international media (including The Independent, The Guardian, Times Higher Education, BBC Radio 4, Die Zeit, and The Economist) on these issues. He is also a regular contributor to Nottingham's Sixty Symbols YouTube project which has, as of June 2013, attracted a little over 20 million views (across - 200 videos). Although he does not share his infamous namesake's fascination with the binomial theorem, in his spare time Moriarty enjoys exploring the relationships between mathematics/physics and music.
Sébastien GAUTHIER is 'directeur de recherche' au Centre d'élaboration de matériaux et d'études structurales (CEMES) in Toulouse (France). He joined the 'Groupe de Physique des Solides de l'Ecole Normale Supérieure' (Paris) in 1981 to study inelastic electron tunneling spectroscopy in metal-insulator-metal junctions. He is working in the scanning tunnelling microscopy (STM) field since 1986. He built several UHV-STM to study metal-on-metal crystalline growth. He moved to Toulouse, in CEMES, in 1997 to develop STM experiments on single adsorbed molecules on metallic surfaces. He is involved in non-contact Atomic Force microscopy (nc-AFM) since 2002, for studying single molecules adsorbed on insulating surfaces, with a special interest in charge manipulation on this type of systems.
Philip Moriarty is a Professor of Physics and an Engineering & Physical Sciences Research Council (EPSRC) Fellow in the School of Physics and Astronomy, University of Nottingham. His research interests span a number of topical themes in nanometre scale science with a particular recent focus on single atom/molecule imaging and manipulation using dynamic force microscopy. In addition to his coordination of a number of nanoscience-focussed European networks (including, most recently, ACRITAS(Actuation and Characterisation at the Single Bond Limit)), he was Chair of the Institute of Physics Nanoscale Physics and Technology Group from 2009 - 2012, is currently a member of the Science Board of the UK Institute of Physics, and was a member of the EPSRC Strategic Advisory Team for Physics from 2005 – 2006. Moriarty has a keen interest in outreach activities and both science and higher education funding policy. In addition to participating in a number of research council-funded public engagement projects (including Giants of the Infinitesimal), and his membership of the Steering Committee of the Council for the Defence of British Universities, he has interacted with national and international media (including The Independent, The Guardian, Times Higher Education, BBC Radio 4, Die Zeit, and The Economist) on these issues. He is also a regular contributor to Nottingham’s Sixty Symbols YouTube project which has, as of June 2013, attracted a little over 20 million views (across ~ 200 videos). Although he does not share his infamous namesake's fascination with the binomial theorem, in his spare time Moriarty enjoys exploring the relationships between mathematics/physics and music. Sébastien GAUTHIER is "directeur de recherche" au Centre d'élaboration de matériaux et d'études structurales (CEMES) in Toulouse (France). He joined the "Groupe de Physique des Solides de l'Ecole Normale Supérieure" (Paris) in 1981 to study inelastic electron tunneling spectroscopy in metal-insulator-metal junctions. He is working in the scanning tunnelling microscopy (STM) field since 1986. He built several UHV-STM to study metal-on-metal crystalline growth. He moved to Toulouse, in CEMES, in 1997 to develop STM experiments on single adsorbed molecules on metallic surfaces. He is involved in non-contact Atomic Force microscopy (nc-AFM) since 2002, for studying single molecules adsorbed on insulating surfaces, with a special interest in charge manipulation on this type of systems.
Pauli's Principle in Probe Microscopy.- Mechanical and Electrical Properties of Single Molecules.- Atom Manipulation Using Atomic Force Microscopy at Room Temperature.- A Considered Approach to Force Extraction from Dynamic Force Microscopy Measurements.- Theoretical Challenges of Simultaneous NC-AFM/STM Experiments.- Manipulation of Metal Nanoparticles on Insulating Surfaces.- Imaging of Defects on Ge(001):H by Non-Contact Atomic Force Microscopy.- Adsorption Structures of Amino Acids on Calcite/104).- NC-AFM and KPFM Study of the Adsorption of a Triphenylene Derivative on KBr(001).
Erscheint lt. Verlag | 28.4.2015 |
---|---|
Reihe/Serie | Advances in Atom and Single Molecule Machines | Advances in Atom and Single Molecule Machines |
Zusatzinfo | XX, 154 p. 62 illus., 40 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Chemie ► Physikalische Chemie |
Technik | |
Schlagworte | Atomic force microscopy • Atom Technology • Dynamic Force Microscopy • High Resolution Imaging • Non-Contact Atomic Force Microscopy • Picotechnology • Scanning Probe Microscopy • Single Atom Spectroscopy • Single molecule spectroscopy |
ISBN-10 | 3-319-17401-0 / 3319174010 |
ISBN-13 | 978-3-319-17401-3 / 9783319174013 |
Haben Sie eine Frage zum Produkt? |
Größe: 5,8 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich