Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Multivariate Density Estimation (eBook)

Theory, Practice, and Visualization
eBook Download: EPUB
2015 | 2. Auflage
Wiley (Verlag)
978-1-118-57553-6 (ISBN)

Lese- und Medienproben

Multivariate Density Estimation -  David W. Scott
Systemvoraussetzungen
103,99 inkl. MwSt
(CHF 99,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Clarifies modern data analysis through nonparametric density estimation for a complete working knowledge of the theory and methods Featuring a thoroughly revised presentation, Multivariate Density Estimation: Theory, Practice, and Visualization, Second Edition maintains an intuitive approach to the underlying methodology and supporting theory of density estimation. Including new material and updated research in each chapter, the Second Edition presents additional clarification of theoretical opportunities, new algorithms, and up-to-date coverage of the unique challenges presented in the field of data analysis. The new edition focuses on the various density estimation techniques and methods that can be used in the field of big data. Defining optimal nonparametric estimators, the Second Edition demonstrates the density estimation tools to use when dealing with various multivariate structures in univariate, bivariate, trivariate, and quadrivariate data analysis. Continuing to illustrate the major concepts in the context of the classical histogram, Multivariate Density Estimation: Theory, Practice, and Visualization, Second Edition also features: Over 150 updated figures to clarify theoretical results and to show analyses of real data sets An updated presentation of graphic visualization using computer software such as R A clear discussion of selections of important research during the past decade, including mixture estimation, robust parametric modeling algorithms, and clustering More than 130 problems to help readers reinforce the main concepts and ideas presented Boxed theorems and results allowing easy identification of crucial ideas Figures in color in the digital versions of the book A website with related data sets Multivariate Density Estimation: Theory, Practice, and Visualization, Second Edition is an ideal reference for theoretical and applied statisticians, practicing engineers, as well as readers interested in the theoretical aspects of nonparametric estimation and the application of these methods to multivariate data. The Second Edition is also useful as a textbook for introductory courses in kernel statistics, smoothing, advanced computational statistics, and general forms of statistical distributions.

David W. Scott, PhD, is Noah Harding Professor in the Department of Statistics at Rice University. The author of over 100 published articles, papers, and book chapters, Dr. Scott is also Fellow of the American Statistical Association (ASA) and the Institute of Mathematical Statistics. He is recipient of the ASA Founder's Award and the Army Wilks Award. His research interests include computational statistics, data visualization, and density estimation. Dr. Scott is also coeditor of Wiley Interdisciplinary Reviews: Computational Statistics and previous Editor of the Journal of Computational and Graphical Statistics.

"The book is an ideal reference for theoretical and applied statisticians, practicing engineers, as well as readers interested in the theoretical aspects of nonparametric estimation and the application of these methods to multivariate data. The second edition is also useful as a textbook for introductory courses in kernel statistics, smoothing, advanced computational statistics, and general forms of statistical distributions." (Zentralblatt MATH, 1 June 2015)

Erscheint lt. Verlag 12.3.2015
Reihe/Serie Wiley Series in Probability and Statistics
Wiley Series in Probability and Statistics
Wiley Series in Probability and Statistics
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Schlagworte Big Data • Clustering • Computational & Graphical Statistics • Computational Statistics • Computer Graphics • Data Analysis • Density Estimation • density estimators • Engineering statistics • frequency polygons • histogram • kernel theory • mixture estimation • Multivariate Analyse • multivariate analysis • multivariate data • nonparametric estimation • quadrivariate data • Rechnergestützte u. graphische Statistik • Rechnergestützte u. graphische Statistik • robust parametric modeling algorithms • smoothing • Statistical Theory • Statistics • Statistik • Statistik in den Ingenieurwissenschaften • trivariate data • univariate data • Visualization
ISBN-10 1-118-57553-9 / 1118575539
ISBN-13 978-1-118-57553-6 / 9781118575536
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich