Probabilistic Graphical Models
Principles and Applications
Seiten
2015
|
2015 ed.
Springer London Ltd (Verlag)
978-1-4471-6698-6 (ISBN)
Springer London Ltd (Verlag)
978-1-4471-6698-6 (ISBN)
- Titel erscheint in neuer Auflage
- Artikel merken
Zu diesem Artikel existiert eine Nachauflage
This accessible text/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective. The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes. Features: presents a unified framework encompassing all of the main classes of PGMs; describes the practical application of the different techniques; examines the latest developments in the field, covering multidimensional Bayesian classifiers, relational graphical models and causal models; provides exercises, suggestions for further reading, and ideas for research or programming projects at the end of each chapter.
Part I: Fundamentals
Introduction
Probability Theory
Graph Theory
Part II: Probabilistic Models
Bayesian Classifiers
Hidden Markov Models
Markov Random Fields
Bayesian Networks: Representation and Inference
Bayesian Networks: Learning
Dynamic and Temporal Bayesian Networks
Part III: Decision Models
Decision Graphs
Markov Decision Processes
Part IV: Relational and Causal Models
Relational Probabilistic Graphical Models
Graphical Causal Models
Reihe/Serie | Advances in Pattern Recognition |
---|---|
Zusatzinfo | 25 Tables, black and white; 4 Illustrations, color; 113 Illustrations, black and white; XXIV, 253 p. 117 illus., 4 illus. in color. |
Verlagsort | England |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 696 g |
Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Technik ► Elektrotechnik / Energietechnik | |
Schlagworte | bayesian classifiers • Bayesian networks • decision networks • hidden Markov models • Influence Diagrams • Learning Graphical Models • Markov Decision Processes • Markov Random Fields • Probabilistic Graphical Models • probabilistic inference |
ISBN-10 | 1-4471-6698-1 / 1447166981 |
ISBN-13 | 978-1-4471-6698-6 / 9781447166986 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2024)
REDLINE (Verlag)
CHF 27,95
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …
Buch | Hardcover (2024)
Penguin (Verlag)
CHF 39,20