Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Probabilistic Graphical Models

Principles and Applications
Buch | Hardcover
253 Seiten
2015 | 2015 ed.
Springer London Ltd (Verlag)
978-1-4471-6698-6 (ISBN)

Lese- und Medienproben

Probabilistic Graphical Models - Luis Enrique Sucar
CHF 97,35 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
This accessible text/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective. The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes. Features: presents a unified framework encompassing all of the main classes of PGMs; describes the practical application of the different techniques; examines the latest developments in the field, covering multidimensional Bayesian classifiers, relational graphical models and causal models; provides exercises, suggestions for further reading, and ideas for research or programming projects at the end of each chapter.

Part I: Fundamentals

Introduction

Probability Theory

Graph Theory

Part II: Probabilistic Models

Bayesian Classifiers

Hidden Markov Models

Markov Random Fields

Bayesian Networks: Representation and Inference

Bayesian Networks: Learning

Dynamic and Temporal Bayesian Networks

Part III: Decision Models

Decision Graphs

Markov Decision Processes

Part IV: Relational and Causal Models

Relational Probabilistic Graphical Models

Graphical Causal Models

Reihe/Serie Advances in Pattern Recognition
Zusatzinfo 25 Tables, black and white; 4 Illustrations, color; 113 Illustrations, black and white; XXIV, 253 p. 117 illus., 4 illus. in color.
Verlagsort England
Sprache englisch
Maße 155 x 235 mm
Gewicht 696 g
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik Elektrotechnik / Energietechnik
Schlagworte bayesian classifiers • Bayesian networks • decision networks • hidden Markov models • Influence Diagrams • Learning Graphical Models • Markov Decision Processes • Markov Random Fields • Probabilistic Graphical Models • probabilistic inference
ISBN-10 1-4471-6698-1 / 1447166981
ISBN-13 978-1-4471-6698-6 / 9781447166986
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
CHF 39,20