Research and innovation in areas such as circuits, microsystems, packaging, biocompatibility, miniaturization, power supplies, remote control, reliability, and lifespan are leading to a rapid increase in the range of devices and corresponding applications in the field of wearable and implantable biomedical microsystems, which are used for monitoring, diagnosing, and controlling the health conditions of the human body. This book provides comprehensive coverage of the fundamental design principles and validation for implantable microsystems, as well as several major application areas. Each component in an implantable device is described in details, and major case studies demonstrate how these systems can be optimized for specific design objectives. The case studies include applications of implantable neural signal processors, brain-machine interface (BMI) systems intended for both data recording and treatment, neural prosthesis, bladder pressure monitoring for treating urinary incontinence, implantable imaging devices for early detection and diagnosis of diseases as well as electrical conduction block of peripheral nerve for chronic pain management. Implantable Biomedical Microsystems is the first comprehensive coverage of bioimplantable system design providing an invaluable information source for researchers in Biomedical, Electrical, Computer, Systems, and Mechanical Engineering as well as engineers involved in design and development of wearable and implantable bioelectronic devices and, more generally, teams working on low-power microsystems and their corresponding wireless energy and data links. - First time comprehensive coverage of system-level and component-level design and engineering aspects for implantable microsystems. - Provides insight into a wide range of proven applications and application specific design trade-offs of bioimplantable systems, including several major case studies- Enables Engineers involved in development of implantable electronic systems to optimize applications for specific design objectives.
Front cover 1
Implantable Biomedical Microsystems: Design Principles and Applications 2
Copyright 3
Contents 4
Contributors 11
Preface 14
Part I: Design Principles for Bioimplantable Systems 16
Chapter 1: Introduction 18
Part I: Design Principles for Bioimplantable Systems 22
Chapter 2: Electrical Interfaces for Recording, Stimulation, and Sensing 22
Chapter 3: Analogue Front-End and Telemetry Systems 22
Chapter 4: Signal processing hardware 23
Chapter 5: Energy Management Integrated Circuits for Wireless Power Transmission 23
Chapter 6: System Integration and Packaging 23
Chapter 7: Clinical and Regulatory Considerations of Implantable Medical Devices 24
Chapter 8: Reliability and Security of Implantable and Wearable Medical Devices 24
Part II: Applications of Bioimplantable Systems 24
Chapter 9: Electrical biosensors: peripheral nerve sensors 24
Chapter 10: Electrodes for Electrical Conduction Block of Peripheral Nerve 25
Chapter 11: Implantable Bladder Pressure Sensor for Chronic Application 25
Chapter 12: Neural Recording Interfaces for Intracortical Implants 26
Chapter 13: Implantable Imaging System for Automated Monitoring of Internal Organs 26
References 26
Chapter 2: Electrical interfaces for recording, stimulation, and sensing 28
2.1. Introduction 28
2.2. Electrode Design Considerations 30
2.3. Electrode Designs 32
2.3.1. Microwire Probes 32
2.3.2. Silicon-Based Devices 32
2.3.3. Polymer-Based Devices 35
2.3.3.1. General considerations 35
2.3.3.2. Polyimide 37
2.3.3.3. Polydimethylsiloxane 38
2.3.3.4. Parylene 40
2.3.3.5. Liquid crystal polymer 40
2.3.3.6. Polymer nanocomposites 41
2.3.3.7. Issues 43
2.4. Emerging Design Trends 45
2.4.1. New Materials and Designs for Enhanced Bio-integration 45
2.4.2. Waveguides for Implanted Optogenetic Stimulation Systems 45
References 46
Chapter 3: Analog front-end and telemetry systems 54
3.1. Introduction 54
3.2. Analog Front-End System 55
3.3. Front-End Amplifier Design 56
3.4. Simulation Circuit Design 63
3.5. Telemetry System Introduction 66
3.6. RF Power Transfer Circuit 66
3.7. Data Telemetry Circuit 67
3.8. Summary 70
Acknowledgment 70
Chapter 4: Signal processing hardware 72
4.1. Introduction 72
4.2. Hardware Architecture of the Signal Processing Systems 73
4.3. Analog, Digital, and Mixed-Signal Processors 77
4.3.1. Signal Processing Using Analog Circuits 78
4.3.1.1. Analog signal processing of neural signals 78
Low-power analog processor for automatic neural spike detection 79
Low-power analog processor for decoding of neural signals from the motor cortex 81
Other analog processors of neural signals 83
4.3.1.2. Low-power analog processor for cochlear implants 83
4.3.1.3. Ultralow-power analog processor for ECG acquisition and feature extraction 84
4.3.2. Digital Signal Processing 86
4.3.2.1. Choosing the right processor for digital signal processing 86
General-purpose processors (GPPs) 87
Microcontrollers (MCU) 88
Digital signal processors (DSPs) 89
Application-specific standard products (ASSPs) 90
Field programmable gate array (FPGA)-based processors 90
Application-specific integrated circuit (ASIC)-based processors 91
4.3.2.2. Choosing the right numeric format for DSP processors 91
4.3.3. Design Examples of DSP Processors for bioimplantable systems 92
4.3.3.1. Custom DSP processor for bladder monitoring through afferent neural signals 93
4.3.3.2. Mixed-signal processor to detect epileptic seizures 96
4.4. Conclusions 98
References 98
Chapter 5: Energy management integrated circuits for wireless power transmission 102
5.1. Introduction 102
5.2. Wireless Power Transmission Mechanisms 104
5.3. Overall Structure of Inductively Powered Devices 106
5.4. AC–DC Conversion Units 107
5.4.1. Passive AC–DC Converters 108
5.4.2. Active AC–DC Converters 109
5.4.3. Adaptive Reconfigurable AC–DC Converters 112
5.4.4. Regulated AC–DC Converters 114
5.4.5. Voltage Regulators 117
5.5. Rechargeable Battery and Supercapacitor Charging Units 118
5.5.1. Secondary Energy Sources 119
5.5.2. Li-ion Battery Charger 119
5.5.3. Wireless Capacitor Charger 121
References 122
Chapter 6: System integration and packaging 128
6.1. Introduction 128
6.2. Brief Review of Implant Package Technologies 131
6.2.1. Hermetic Box Packaging Technologies for Long-Term Implants 131
6.2.2. Nonhermetic Micropackage Technologies 132
6.3. System Integration and Biocompatibility 134
6.4. Packaging Materials and Technologies 135
6.5. CWRU Nonhermetic Micropackage Technology 137
6.5.1. Characterization of PDMS Micropackage Technology and Evaluation 137
6.5.2. Verification of the Hypotheses and Mechanism of PDMS Micropackage Processes 140
6.5.3. Micropackage Technology for 3-D Implantable Systems 142
6.6. Implant Evaluation of Nonhermetic Micropackage Technologies 145
6.6.1. Package Methods and Implant-Telemetry-Device Design 145
6.6.2. Implant Evaluation Results and Discussion 146
6.6.3. Summary of Implant Evaluation 148
6.7. Conclusion 148
Acknowledgment 148
References 149
Chapter 7: Clinical and regulatory considerations of implantable medical devices 152
7.1. Introduction 153
7.2. Patient Selection and Special Populations 154
7.2.1. Geriatric Population 154
7.2.2. Patients with Neurological Disease 155
7.2.3. Children 155
7.3. Biocompatibility 156
7.3.1. Metals 157
7.3.2. Polymers 157
7.3.3. Location of Implant 158
7.4. Implantation 159
7.4.1. The Ideal Implant 159
7.4.2. Perioperative Risks 159
7.4.3. Surgical Approach and Technique 159
7.4.4. Device Design 160
7.5. Explantation 161
7.5.1. Approach to Device Removal 161
7.5.2. Replacement and Timing 161
7.5.3. Biodegradable Devices 162
7.6. Infection 162
7.6.1. Infection Prevention 163
7.6.2. Management of Infected Medical Implants 163
7.7. Device Wear and Tear 163
7.7.1. Change in Performance Over Time: Mechanical Failure 164
7.7.2. Electrical and Electrochemical Wear 165
7.7.3. Erosion and Migration 165
7.8. Regulatory Considerations: Tackling the FDA 166
7.8.1. What is a Device? 166
7.8.2. Classify Your Device: Class I, II, III 167
7.8.3. Premarket Notification and Approval 168
7.8.4. Investigational Device Use 170
7.8.5. Quality Systems Regulation Practices 171
7.8.6. Device Labeling 172
7.8.7. Reporting of Adverse Events 172
7.8.8. Regulatory Conclusions 174
7.9. Summary and Conclusions 174
References 174
Chapter 8: Reliability and security of implantable and wearable medical devices 182
8.1. Introduction 183
8.2. Safety of Implantable and Wearable Medical Devices 184
8.2.1. Safety Concerns for IWMDs 184
8.2.2. Challenges in Reliable and Secure IWMD Design 187
8.3. Reliability Concerns and Solutions 188
8.3.1. Hardware Failures 189
8.3.1.1. Power Subsystem Reliability 189
8.3.1.2. Processor and Memory Failures 190
8.3.1.3. Packaging and Mechanical/Chemical Reliability 191
8.3.2. Software Reliability 191
8.3.3. RF Reliability 193
8.3.4. Human Reliability 193
8.4. Security Concerns and Solutions 194
8.4.1. Radio Attacks 195
8.4.1.1. Eavesdropping and Access Control 195
8.4.1.2. Battery Drain Attacks 198
8.4.1.3. External Security Devices to Defend Against Radio Attacks 198
8.4.2. Side-Channel Attacks 200
8.4.3. Hardware Attacks 201
8.4.3.1. Hardware Trojan 201
8.4.3.2. EMI Injection Attacks 201
8.4.4. Software Attacks 202
8.4.5. Human Errors 205
8.5. Conclusions 205
Acknowledgment 206
References 206
Part II: Applications of Bioimplantable Systems 216
Chapter 9: Biochips: Electrical Biosensors: Peripheral Nerve Sensors 218
Electrical Biosensors: Peripheral Nerve Sensors 218
9.1. Introduction 218
9.2. Peripheral Nerve Anatomy 219
9.3. Cuff-Style Electrodes 219
9.3.1. Types 220
9.3.2. Fabrication 220
9.3.3. Uses 220
9.4. Penetrating and Sieve Electrodes 222
9.4.1. Types 224
9.4.2. Fabrication 224
9.4.3. Uses 225
9.5. Neural Recording Amplifiers 225
References 228
Chapter 10: Electrodes for electrical conduction block of the peripheral nerve 230
10.1. Introduction 230
10.2. Kilohertz Frequency Alternating Current (KHFAC) Nerve Block 231
10.2.1. Electrodes for KHFAC Nerve Block 233
10.3. Direct Current Nerve Block 234
10.3.1. Electrode Chemistry and Nerve Damage 235
10.3.2. Types of High-Capacitance Electrodes 236
10.3.3. Fabrication and Testing of High-Capacitance Electrodes for DC Nerve Block 237
10.3.4. Electrode Potential Measurements 238
10.3.5. DC Waveform Parameters 238
10.3.6. DC Block Success 239
10.3.7. Nerve Integrity Testing 240
10.3.8. Cumulative DC Delivery Testing 240
10.4. Conclusion 241
References 241
Chapter 11: Implantable bladder pressure sensor for chronic application: a case study 246
11.1. Introduction 246
11.2. Challenges and Constraints for a Chronically Implanted Bladder Pressure Sensor 248
11.3. Wireless Implantable Micromanometer Concept 248
11.4. Implantable Microsystem Design 252
11.4.1. Power Management Unit 253
11.4.2. Adaptive Rate Transmitter 254
11.4.3. Wireless Battery Charger 256
11.5. Microsystem Assembly and Packaging 257
11.5.1. Microsystem Packaging 258
11.6. Implant In Vivo Animal Trials 260
11.7. Conclusion 263
Acknowledgment 264
References 264
Chapter 12: Neural recording interfaces for intracortical implants * 266
12.1. Introduction 266
12.2. State-of-the-Art Review 268
12.2.1. Wireless Multichannel Neurocortical Recording Systems 269
12.2.2. AFE Interfaces for Multichannel Systems 273
12.3. Neural Sensor Architecture 275
12.3.1. Modes of Operation 278
12.3.1.1. Calibration 278
12.3.1.2. Signal tracking 279
12.3.1.3. Feature extraction 279
12.3.2. Event-Based Communication 280
12.3.3. Communication Protocol 283
12.4. Channel Architecture 284
12.5. Telemetry Unit 286
12.6. Experimental Results 287
12.7. Conclusions 293
References 293
Chapter 13: Implantable imaging system for automated monitoring of internal organs 296
13.1. Introduction 297
13.1.1. Limitations of Existing Monitoring Technology 298
13.2. Implantable Imaging System: An Overview 298
13.2.1. Proposed System 298
13.2.2. How Diagnostic Ultrasound Imaging Functions? A Brief Recall 300
13.3. System Overview 303
13.3.1. Design Space Exploration 303
13.3.1.1. Transducer 304
Frequency 305
Pitch 305
Array material 305
Active aperture 305
13.3.1.2. Imaging assembly 305
13.3.2. Imaging Operation 307
13.3.3. Power Analysis 308
13.3.3.1. Power/energy requirements 308
13.3.3.2. Power supply in implantable assembly 309
13.3.4. Implantability Issues 310
13.3.4.1. Biocompatibility 310
13.3.4.2. Attachment of device 311
13.3.4.3. Temperature rise in tissue 311
13.4. Verification of Advantages of Interstitial Ultrasonic Imaging 311
13.4.1. Software Simulations 312
13.4.1.1. Simulation framework 312
13.4.1.2. Imaging metrics 314
13.4.1.3. Simulation results 314
13.4.2. Experimental Evaluations 316
13.4.2.1. Experimental framework 318
13.4.2.2. Experimental results 321
13.5. A Few Discussion Points 324
13.5.1. Economic Feasibility 324
13.5.2. Downscaling of Size 324
13.5.3. Wider Scan Range 324
13.5.4. Extension of Application 324
13.5.5. Image Denoising 325
13.5.6. Beyond Early Detection of Cancer 325
13.6. Conclusion 325
References 325
Summary and future work 328
Summary 328
Future Work 328
Index 330
Erscheint lt. Verlag | 28.1.2015 |
---|---|
Sprache | englisch |
Themenwelt | Medizin / Pharmazie ► Allgemeines / Lexika |
Medizin / Pharmazie ► Pflege | |
Medizin / Pharmazie ► Physiotherapie / Ergotherapie ► Orthopädie | |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Maschinenbau | |
Technik ► Medizintechnik | |
ISBN-10 | 0-323-26190-6 / 0323261906 |
ISBN-13 | 978-0-323-26190-6 / 9780323261906 |
Haben Sie eine Frage zum Produkt? |
Größe: 24,7 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
Größe: 12,3 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich