Optimized Bayesian Dynamic Advising
Theory and Algorithms
Seiten
2014
Springer London Ltd (Verlag)
978-1-4471-5675-8 (ISBN)
Springer London Ltd (Verlag)
978-1-4471-5675-8 (ISBN)
r Contents 1 Introduction . 1 Motivation . 2 State of the art . 1 Operator supports . 2 Mainstream multivariate techniques . 3 Developed advising and its role in computer support . 10 2 Underlying theory . 1 General conventions . 2 Basic notions and notations .
This work summarizes the theoretical and algorithmic basis of optimized pr- abilistic advising. It developed from a series of targeted research projects s- ported both by the European Commission and Czech grant bodies. The source text has served as a common basis of communication for the research team. When accumulating and re?ning the material we found that the text could also serve as • a grand example of the strength of dynamic Bayesian decision making, • a practical demonstration that computational aspects do matter, • a reference to ready particular solutions in learning and optimization of decision-making strategies, • a source of open and challenging problems for postgraduate students, young as well as experienced researchers, • a departure point for a further systematic development of advanced op- mized advisory systems, for instance, in multiple participant setting. These observations have inspired us to prepare this book. Prague, Czech Republic Miroslav K´ arn´ y October 2004 Josef B¨ ohm Tatiana V. Guy Ladislav Jirsa Ivan Nagy Petr Nedoma Ludv´ ?k Tesa? r Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1. 2. 1 Operator supports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1. 2. 2 Mainstream multivariate techniques . . . . . . . . . . . . . . . . . 4 1. 2. 3 Probabilistic dynamic optimized decision-making . . . . . . 6 1. 3 Developed advising and its role in computer support . . . . . . . . . 6 1. 4 Presentation style, readership andlayout . . . . . . . . . . . . . . . . . . . 7 1. 5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Underlying theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2. 1 General conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2. 2 Basic notions and notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
This work summarizes the theoretical and algorithmic basis of optimized pr- abilistic advising. It developed from a series of targeted research projects s- ported both by the European Commission and Czech grant bodies. The source text has served as a common basis of communication for the research team. When accumulating and re?ning the material we found that the text could also serve as • a grand example of the strength of dynamic Bayesian decision making, • a practical demonstration that computational aspects do matter, • a reference to ready particular solutions in learning and optimization of decision-making strategies, • a source of open and challenging problems for postgraduate students, young as well as experienced researchers, • a departure point for a further systematic development of advanced op- mized advisory systems, for instance, in multiple participant setting. These observations have inspired us to prepare this book. Prague, Czech Republic Miroslav K´ arn´ y October 2004 Josef B¨ ohm Tatiana V. Guy Ladislav Jirsa Ivan Nagy Petr Nedoma Ludv´ ?k Tesa? r Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1. 2. 1 Operator supports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1. 2. 2 Mainstream multivariate techniques . . . . . . . . . . . . . . . . . 4 1. 2. 3 Probabilistic dynamic optimized decision-making . . . . . . 6 1. 3 Developed advising and its role in computer support . . . . . . . . . 6 1. 4 Presentation style, readership andlayout . . . . . . . . . . . . . . . . . . . 7 1. 5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Underlying theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2. 1 General conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2. 2 Basic notions and notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Underlying theory.- Approximate and feasible learning.- Approximate design.- Problem formulation.- Solution and principles of its approximation: learning part.- Solution and principles of its approximation: design part.- Learning with normal factors and components.- Design with normal mixtures.- Learning with Markov-chain factors and components.- Design with Markov-chain mixtures.- Sandwich BMTB for mixture initiation.- Mixed mixtures.- Applications of the advisory system.- Concluding remarks.
Erscheint lt. Verlag | 20.10.2014 |
---|---|
Reihe/Serie | Advanced Information and Knowledge Processing |
Zusatzinfo | XVII, 529 p. |
Verlagsort | England |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Informatik ► Grafik / Design ► Digitale Bildverarbeitung |
Informatik ► Software Entwicklung ► User Interfaces (HCI) | |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Mathematik / Informatik ► Informatik ► Web / Internet | |
Mathematik / Informatik ► Mathematik ► Computerprogramme / Computeralgebra | |
Naturwissenschaften ► Biologie | |
Technik ► Umwelttechnik / Biotechnologie | |
ISBN-10 | 1-4471-5675-7 / 1447156757 |
ISBN-13 | 978-1-4471-5675-8 / 9781447156758 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Modelle für 3D-Druck und CNC entwerfen
Buch | Softcover (2022)
dpunkt (Verlag)
CHF 48,85
alles zum Drucken, Scannen, Modellieren
Buch | Softcover (2024)
Markt + Technik Verlag
CHF 34,90