Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Bernoulli Numbers and Zeta Functions (eBook)

eBook Download: PDF
2014 | 2014
XI, 274 Seiten
Springer Tokyo (Verlag)
978-4-431-54919-2 (ISBN)

Lese- und Medienproben

Bernoulli Numbers and Zeta Functions - Tsuneo Arakawa, Tomoyoshi Ibukiyama, Masanobu Kaneko
Systemvoraussetzungen
139,09 inkl. MwSt
(CHF 135,85)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Two major subjects are treated in this book. The main one is the theory of Bernoulli numbers and the other is the theory of zeta functions. Historically, Bernoulli numbers were introduced to give formulas for the sums of powers of consecutive integers. The real reason that they are indispensable for number theory, however, lies in the fact that special values of the Riemann zeta function can be written by using Bernoulli numbers. This leads to more advanced topics, a number of which are treated in this book: Historical remarks on Bernoulli numbers and the formula for the sum of powers of consecutive integers; a formula for Bernoulli numbers by Stirling numbers; the Clausen-von Staudt theorem on the denominators of Bernoulli numbers; Kummer's congruence between Bernoulli numbers and a related theory of p-adic measures; the Euler-Maclaurin summation formula; the functional equation of the Riemann zeta function and the Dirichlet L functions, and their special values at suitable integers; various formulas of exponential sums expressed by generalized Bernoulli numbers; the relation between ideal classes of orders of quadratic fields and equivalence classes of binary quadratic forms; class number formula for positive definite binary quadratic forms; congruences between some class numbers and Bernoulli numbers; simple zeta functions of prehomogeneous vector spaces; Hurwitz numbers; Barnes multiple zeta functions and their special values; the functional equation of the doub

le zeta functions; and poly-Bernoulli numbers. An appendix by Don Zagier on curious and exotic identities for Bernoulli numbers is also supplied. This book will be enjoyable both for amateurs and for professional researchers. Because the logical relations between the chapters are loosely connected, readers can start with any chapter depending on their interests. The expositions of the topics are not always typical, and some parts are completely new.



(late) Tsuneo Arakawa

Tomoyoshi Ibukiyama
Professor
Department of Mathematics
Graduate School of Science
Osaka University
Machikaneyama 1-1 Toyonaka, Osaka, 560-0043 Japan

Masanobu Kaneko
Professor
Faculty of Mathematics
Kyushu University
Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan


Two major subjects are treated in this book. The main one is the theory of Bernoulli numbers and the other is the theory of zeta functions. Historically, Bernoulli numbers were introduced to give formulas for the sums of powers of consecutive integers. The real reason that they are indispensable for number theory, however, lies in the fact that special values of the Riemann zeta function can be written by using Bernoulli numbers. This leads to more advanced topics, a number of which are treated in this book: Historical remarks on Bernoulli numbers and the formula for the sum of powers of consecutive integers; a formula for Bernoulli numbers by Stirling numbers; the Clausen-von Staudt theorem on the denominators of Bernoulli numbers; Kummer's congruence between Bernoulli numbers and a related theory of p-adic measures; the Euler-Maclaurin summation formula; the functional equation of the Riemann zeta function and the Dirichlet L functions, and their special values at suitableintegers; various formulas of exponential sums expressed by generalized Bernoulli numbers; the relation between ideal classes of orders of quadratic fields and equivalence classes of binary quadratic forms; class number formula for positive definite binary quadratic forms; congruences between some class numbers and Bernoulli numbers; simple zeta functions of prehomogeneous vector spaces; Hurwitz numbers; Barnes multiple zeta functions and their special values; the functional equation of the double zeta functions; and poly-Bernoulli numbers. An appendix by Don Zagier on curious and exotic identities for Bernoulli numbers is also supplied. This book will be enjoyable both for amateurs and for professional researchers. Because the logical relations between the chapters are loosely connected, readers can start with any chapter depending on their interests. The expositions of the topics are not always typical, and some parts are completely new.

(late) Tsuneo ArakawaTomoyoshi IbukiyamaProfessorDepartment of MathematicsGraduate School of ScienceOsaka UniversityMachikaneyama 1-1 Toyonaka, Osaka, 560-0043 JapanMasanobu KanekoProfessorFaculty of MathematicsKyushu UniversityMotooka 744, Nishi-ku, Fukuoka, 819-0395, Japan

​1. Bernoulli Numbers 2. Stirling Numbers and Bernoulli Numbers3. Theorem of Clausen and von Staudt, and Kummer’s Congruence4. Generalized Bernoulli Numbers5. Summation Formula of Euler–Maclaurin and Riemann Zeta Function 6. Quadratic Forms and Ideal Theory of Quadratic Fields 7. Congruence Between Bernoulli Numbers and Class Numbers of Imaginary Quadratic Fields 8. Character Sums and Bernoulli Numbers 9. Special Values and Complex Integral Representation of L-functions 10. Class Number Formula and an Easy Zeta Function of a Prehomogeneous Vector Space11. p-adic Measure and Kummer’s Congruence12. Hurwitz Numbers 13. The Barnes Multiple Zeta Function14. Poly-Bernoulli NumbersReferencesIndex

Erscheint lt. Verlag 11.7.2014
Reihe/Serie Springer Monographs in Mathematics
Springer Monographs in Mathematics
Co-Autor Don B. Zagier
Zusatzinfo XI, 274 p. 5 illus., 1 illus. in color.
Verlagsort Tokyo
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Schlagworte 11B68, 11B73, 11M06, 11L03, 11M06, 11M32, 11M35 • Bernoulli numbers and polynomials • Exponential sums • L-functions • MSC • MSC; 11B68, 11B73, 11M06, 11L03, 11M06, 11M32, 11M35 • Riemann zeta function • Stirling numbers
ISBN-10 4-431-54919-6 / 4431549196
ISBN-13 978-4-431-54919-2 / 9784431549192
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich