Bayesian Networks for Probabilistic Inference and Decision Analysis in Forensic Science (eBook)
472 Seiten
Wiley (Verlag)
978-1-118-91475-5 (ISBN)
FRANCO TARONI, University of Lausanne, Switzerland ALEX BIEDERMANN, University of Lausanne, Switzerland SILVIA BOZZA, University Ca' Foscari of Venice, Italy PAOLO GARBOLINO, University IUAV of Venice, Italy COLIN AITKEN, University ofEdinburgh, UK
Foreword xiii
Preface to the second edition xvii
Preface to the first edition xxi
1 The logic of decision 1
1.1 Uncertainty and probability 1
1.2 Reasoning under uncertainty 12
1.3 Population proportions, probabilities and induction 19
1.4 Decision making under uncertainty 28
1.5 Further readings 42
2 The logic of Bayesian networks and influence diagrams 45
2.1 Reasoning with graphical models 45
2.2 Reasoning with Bayesian networks and influence diagrams 65
2.3 Further readings 82
3 Evaluation of scientific findings in forensic science 85
3.1 Introduction 85
3.2 The value of scientific findings 86
3.3 Principles of forensic evaluation and relevant propositions 90
3.4 Pre-assessment of the case 100
3.5 Evaluation using graphical models 103
4 Evaluation given source level propositions 113
4.1 General considerations 113
4.2 Standard statistical distributions 115
4.3 Two stains, no putative source 117
4.4 Multiple propositions 122
5 Evaluation given activity level propositions 129
5.1 Evaluation of transfer material given activity level propositions assuming a direct source relationship 130
5.2 Cross- or two-way transfer of trace material 150
5.3 Evaluation of transfer material given activity level propositions with uncertainty about the true source 154
6 Evaluation given crime level propositions 159
6.1 Material found on a crime scene: A general approach 159
6.2 Findings with more than one component: The example of marks 168
6.3 Scenarios with more than one trace: 'Two stain-one offender' cases 182
6.4 Material found on a person of interest 185
7 Evaluation of DNA profiling results 196
7.1 DNA likelihood ratio 196
7.2 Network approaches to the DNA likelihood ratio 198
7.3 Missing suspect 203
7.4 Analysis when the alternative proposition is that a brother of the suspect left the crime stain 206
7.5 Interpretation with more than two propositions 214
7.6 Evaluation with more than two propositions 217
7.7 Partially corresponding profiles 220
7.8 Mixtures 223
7.9 Kinship analyses 227
7.10 Database search 234
7.11 Probabilistic approaches to laboratory error 241
7.12 Further reading 246
8 Aspects of combining evidence 249
8.1 Introduction 249
8.2 A difficulty in combining evidence: The 'problem of conjunction' 250
8.3 Generic patterns of inference in combining evidence 252
8.4 Examples of the combination of distinct items of evidence 262
9 Networks for continuous models 281
9.1 Random variables and distribution functions 281
9.2 Samples and estimates 289
9.3 Continuous Bayesian networks 292
9.4 Mixed networks 306
10 Pre-assessment 314
10.1 Introduction 314
10.2 General elements of pre-assessment 315
10.3 Pre-assessment in a fibre case: A worked through example 316
10.4 Pre-assessment in a cross-transfer scenario 321
10.5 Pre-assessment for consignment inspection 328
10.6 Pre-assessment for gunshot residue particles 335
11 Bayesian decision networks 343
11.1 Decision making in forensic science 343
11.2 Examples of forensic decision analyses 344
11.3 Further readings 368
12 Object-oriented networks 370
12.1 Object orientation 370
12.2 General elements of object-oriented networks 371
12.3 Object-oriented networks for evaluating DNA profiling results 378
13 Qualitative, sensitivity and conflict analyses 388
13.1 Qualitative probability models 389
13.2 Sensitivity analyses 402
13.3 Conflict analysis 410
References 419
Author index 433
Subject index 438
"The clear and accessible style of this second edition
makes this book ideal for all forensic scientists, applied
statisticians and graduate students wishing to evaluate forensic
findings from the perspective of probability and decision
analysis. It will also appeal to lawyers and other scientists and
professionals interested in the evaluation and interpretation of
forensic findings, including decision making based on scientific
information." (Zentralblatt MATH, 1 October
2014)
Erscheint lt. Verlag | 2.7.2014 |
---|---|
Reihe/Serie | Statistics in Practice |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Recht / Steuern ► Strafrecht ► Kriminologie | |
Sozialwissenschaften | |
Technik | |
Schlagworte | Angewandte Wahrscheinlichkeitsrechnung u. Statistik • Applied Probability & Statistics • Statistics • Statistik |
ISBN-10 | 1-118-91475-9 / 1118914759 |
ISBN-13 | 978-1-118-91475-5 / 9781118914755 |
Haben Sie eine Frage zum Produkt? |
Größe: 4,2 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich