Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Deformations of Surface Singularities (eBook)

eBook Download: PDF
2014 | 2013
VII, 280 Seiten
Springer Berlin (Verlag)
978-3-642-39131-6 (ISBN)

Lese- und Medienproben

Deformations of Surface Singularities -
Systemvoraussetzungen
53,49 inkl. MwSt
(CHF 52,25)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The present publication contains a special collection of research and review articles on deformations of surface singularities, that put together serve as an introductory survey of results and methods of the theory, as well as open problems and examples.  The aim is to collect material that will help mathematicians already working or wishing to work in this area to deepen their insight and eliminate the technical barriers in this learning process. Additionally, we introduce some material which emphasizes the newly found relationship with the theory of Stein fillings and symplectic geometry. This links two main theories of mathematics: low dimensional topology and algebraic geometry.​

The theory of normal surface singularities is a distinguished part of analytic or algebraic geometry with several important results, its own technical machinery, and several open problems. Recently several connections were established with low dimensional topology, symplectic geometry and theory of Stein fillings. This created an intense mathematical activity with spectacular bridges between the two areas. The theory of deformation of singularities is the key object in these connections. 

 

Altmann, K. and Kastner, L.: Negative Deformations of Toric Singularities that are Smooth in Codimension Two.- Bhupal, M. and Stipsicz, A.I.: Smoothing of Singularities and Symplectic Topology.- Ilten, N.O.: Calculating Milnor Numbers and Versal Component Dimensions from P-Resolution Fans.- Némethi, A: Some Meeting Points of Singularity Theory and Low Dimensional Topology.- Stevens, J.: The Versal Deformation of Cyclic Quotient Singularities.- Stevens, J.: Computing Versal Deformations of Singularities with Hauser's Algorithm.- Van Straten, D.: Tree Singularities: Limits, Series and Stability.​

Erscheint lt. Verlag 24.1.2014
Reihe/Serie Bolyai Society Mathematical Studies
Bolyai Society Mathematical Studies
Zusatzinfo XII, 275 p. 71 illus.
Verlagsort Berlin
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
Technik
Schlagworte Algebraic Geometry • low dimensional topology • singularity theory
ISBN-10 3-642-39131-1 / 3642391311
ISBN-13 978-3-642-39131-6 / 9783642391316
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich