Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Science of Synthesis: Cross Coupling and Heck-Type Reactions Vol. 3 (eBook)

Metal-Catalyzed Heck-Type Reactions and C-C Cross Coupling via C-H Activation

Mats Larhed (Herausgeber)

eBook Download: PDF | EPUB
2014 | 1. Auflage
928 Seiten
Thieme (Verlag)
978-3-13-179091-0 (ISBN)

Lese- und Medienproben

Science of Synthesis: Cross Coupling and Heck-Type Reactions Vol. 3 -
Systemvoraussetzungen
Systemvoraussetzungen
259,99 inkl. MwSt
(CHF 249,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
<p>In <em>Science of Synthesis: Cross Coupling and Heck-Type Reactions</em>, expert authors present and discuss the best and most reliable methods currently available for the formation of new carbon-carbon and carbon-heteroatom bonds using these reactions, highlighted with representative experimental procedures. Together, the three volumes of <em>Cross Coupling and Heck-Type Reactions</em> provide an extensive overview of the current state of the art in this field of central importance in modern chemistry, and are an invaluable resource for the practicing synthetic organic chemist.</p><p>This volume provides comprehensive coverage of the different classes of Heck-type reactions. It describes the state-of-the-art developments in each area whilst critically evaluating the strengths and weaknesses of the different methods. In accordance with the growing demand for synthetic efficiency and practicality in organic synthesis, many of these newly developed Heck-type methods feature operationally convenient conditions, high catalytic efficiency, and high levels of chemical, regiochemical, and stereochemical control. Metal-catalyzed C-H functionalization has also been developed into a powerful tool for organic synthesis, providing for original C-C disconnections in retrosynthetic analysis and improving the overall efficiency of the desired transformations. This volume also summarizes the most important concepts and methods in this hot research area.</p><p> This volume is part of a 3-volume set: </p><p><a href='http://www.thieme.com/index.php?page=shop.product_details&amp;flypage=flypage.tpl&amp;product_id=1498&amp;category_id=11&amp;keyword=cross+Coupling&amp;option=com_virtuemart&amp;Itemid=53'>Cross Coupling and Heck-Type Reactions Workbench Edition</a></p><p><a href='http://www.thieme-chemistry.com/en/products/reference-works/science-of-synthesis.html'>General information about Science of Synthesis</a></p>

Science of Synthesis: Cross Coupling and Heck-Type Reactions 3 – Metal-Catalyzed Heck-Type Reactions and C—C Cross Coupling via C—H Activation 1
Organizational Structure of Science of Synthesis 2
Science of Synthesis Reference Library 3
Title page 5
Imprint 7
Preface 8
Volume Editor's Preface 10
Cross Coupling and Heck-Type Reactions Volumes 12
Abstracts 14
Overview 22
Table of Contents 24
Introduction 40
3.1 Heck Reactions 46
3.1.1 Intermolecular Reactions 46


3.1.1.1.1.1 Arylation of Alkenes Carrying at Least One Keto, Ester, Nitrile, or Amide Group 46
3.1.1.1.1.1.1 Arylations with Aryl Halides 47
3.1.1.1.1.1.1.1 With Iodoarenes or Bromoarenes 47
3.1.1.1.1.1.1.1.1 With Resin-Bound Aryl Halides 71
3.1.1.1.1.1.1.1.2 Arylations in Ionic Liquids 73
3.1.1.1.1.1.1.1.3 Continuous-Flow Heck Arylation 76
3.1.1.1.1.1.1.1.4 Substrates Carrying More than One Keto, Ester, Nitrile, or Amide Group 77
3.1.1.1.1.1.1.2 With Chloroarenes 78
3.1.1.1.1.1.2 Hetarylations with Hetaryl Halides 81
3.1.1.1.1.1.3 Arylations with Other Electrophiles 89
3.1.1.1.1.1.3.1 With Diazonium Salts 89
3.1.1.1.1.1.3.2 With Iodonium Salts 97
3.1.1.1.1.1.3.3 With Aryl Trifluoromethanesulfonates 99
3.1.1.1.1.2 Arylation of Alkenes Carrying at Least One Sulfoxide, Sulfone, Sulfonate, or Sulfinate Group 100
3.1.1.1.1.2.1 Arylations with Aryl Halides 100
3.1.1.1.1.2.2 Arylations with Arenediazonium Salts 101
3.1.1.1.1.3 Arylation of Alkenes Carrying at Least One Phosphonic, Phosphinic, Nitro, or Nitroso Group 103
3.1.1.1.1.3.1 Arylations with Aryl Halides 103
3.1.1.1.1.3.2 Arylations with Arenediazonium Salts 104
3.1.1.1.1.4 Arylation of Alkenes Carrying at Least One Halomethyl Group 105
3.1.1.1.1.5 Arylation of Alkenes Carrying at Least One Aryl Group 107
3.1.1.1.1.5.1 Arylations with Aryl Halides 107
3.1.1.1.1.5.2 Arylations with Other Arylating Agents 108
3.1.1.1.1.6 Arylation of Alkenes Carrying at Least One Hetaryl Group 109
3.1.1.1.1.6.1 Hetarylations with Hetaryl Halides 110
3.1.1.1.2 Reaction with (Het)Arylmetals or (Het)Arenes 114
3.1.1.1.2.1 Reaction with (Het)Arylmetals 116
3.1.1.1.2.1.1 Reaction with Arylmercury Reagents 116
3.1.1.1.2.1.2 Reaction with Arylstannane Reagents 118
3.1.1.1.2.1.3 Reaction with Arylsilane Reagents 120
3.1.1.1.2.1.4 Reaction with Arylboronic Acids and Derivatives 121
3.1.1.1.2.1.5 Reaction with Other Electrophilic Reagents 129
3.1.1.1.2.2 Reaction with (Het)Arenes 131
3.1.1.1.2.2.1 Reaction with Benzene or Electron-Rich (Het)Arenes 132
3.1.1.1.2.2.2 Reaction with Electron-Deficient (Het)Arenes 134
3.1.1.1.2.3 Non-Palladium-Catalyzed Reactions 137
3.1.1.1.3 Reaction with Arene- or Hetarenecarboxylic Acids or Derivatives, or Related Compounds 142
3.1.1.1.3.1 Decarbonylative Reactions of Arenecarboxylic Acid Derivatives 142
3.1.1.1.3.1.1 Reaction with Aroyl Chlorides 143
3.1.1.1.3.1.2 Reaction with Arenecarboxylic Anhydrides 146
3.1.1.1.3.1.3 Reaction with Arenecarboxylates 148
3.1.1.1.3.2 Decarboxylative Reactions of Arenecarboxylic Acids 151
3.1.1.1.3.2.1 Reaction Using Palladium Catalysis 152
3.1.1.1.3.2.2 Reaction Using Rhodium Catalysis 164
3.1.1.1.3.3 Miscellaneous Reactions 166
3.1.1.1.3.3.1 Reaction with Arenesulfonyl Chlorides 166
3.1.1.1.3.3.2 Reaction with Arenesulfinic Acids 170
3.1.1.1.3.3.3 Reaction with Arylphosphonic Acids 172
3.1.1.1.4 Reaction with Nonaromatic Halides, Sulfonates, or Related Compounds 176
3.1.1.1.4.1 Reaction with Alkenyl--X Electrophiles 176
3.1.1.1.4.1.1 Reaction with Alkenyl Iodides 176
3.1.1.1.4.1.2 Reaction with Alkenyl Bromides 179
3.1.1.1.4.1.3 Reaction with Alkenyl Chlorides 183
3.1.1.1.4.1.4 Reaction with Alkenyliodonium Salts 184
3.1.1.1.4.1.5 Reaction with Alkenyl 4-Toluenesulfonates 185
3.1.1.1.4.1.6 Reaction with Alkenyl Trifluoromethanesulfonates and Nonafluorobutanesulfonates 188
3.1.1.1.4.1.7 Reaction with Alkenyl Phosphates 193
3.1.1.1.4.1.8 Reaction with Alkenylboronates 194
3.1.1.1.4.2 Reaction with Benzyl--X Electrophiles 197
3.1.1.1.4.2.1 Reaction with Benzyl Chlorides 198
3.1.1.1.4.2.2 Reaction with Benzyl Trifluoroacetates 199
3.1.1.1.4.3 Reaction with Allyl--X Electrophiles 200
3.1.1.1.4.3.1 Reaction with Allyl 4-Toluenesulfonates 200
3.1.1.1.4.4 Reaction with Other Nonaromatic Electrophiles 201
3.1.1.2 Alkenes with Allylic Substitution and Homologues as Reaction Components 208
3.1.1.2.1 Couplings with Retention of an Allylic or Homoallylic Substituent 208
3.1.1.2.1.1 Using Allylic or Homoallylic Alcohols 208
3.1.1.2.1.1.1 With Aryl or Alkenyl Halides or Trifluoromethanesulfonates 209
3.1.1.2.1.1.2 With Arylboronic Acids 217
3.1.1.2.1.1.3 With Arenediazonium Salts 219
3.1.1.2.1.1.4 With Hypervalent Iodonium Salts 221
3.1.1.2.1.2 Using Allylic Esters or Carbonates 221
3.1.1.2.1.2.1 With Aryl or Alkenyl Halides 222
3.1.1.2.1.2.2 With Aryl- or Alkenylboronic Acids or Esters 223
3.1.1.2.1.2.3 With Arenecarboxylates 224
3.1.1.2.1.2.4 With Arenes 224
3.1.1.2.1.3 Using Allylic Ethers 225
3.1.1.2.1.3.1 With Aryl Halides 225
3.1.1.2.1.3.2 With Arylboronic Acids or Alkenylboronic Esters 226
3.1.1.2.1.3.3 With Arenecarboxylates 228
3.1.1.2.1.4 Using Allyltrimethylsilane with Aryl Iodides or Trifluoromethanesulfonates 228
3.1.1.2.1.5 Using Allylic or Homoallylic Amine Derivatives 229
3.1.1.2.1.5.1 With Aryl or Alkenyl Halides or Trifluoromethanesulfonates 230
3.1.1.2.1.5.2 With Arylboronic Esters 234
3.1.1.2.1.5.3 With Arenediazonium Salts 235
3.1.1.2.2 Couplings with Cleavage of an Allylic or Homoallylic Substituent 236
3.1.1.2.2.1 Using Tertiary Homoallylic Alcohols with Aryl or Alkenyl Halides or Trifluoromethanesulfonates 236
3.1.1.2.2.2 Using Allylic Esters or Carbonates 238
3.1.1.2.2.2.1 With Aryl Halides 238
3.1.1.2.2.2.2 With Arylboronic Acids 240
3.1.1.2.2.3 Using Allylic Silanes with Aryl or Alkenyl Halides or Trifluoromethanesulfonates 242
3.1.1.2.2.4 Using Allylic Halides with Arenecarboxylates 245
3.1.1.3 Electron-Rich Alkenes as Reaction Components 250
3.1.1.3.1 Reaction with Aryl or Hetaryl Halides or Pseudohalides 250
3.1.1.3.1.1 Regioselective a-Arylation and Vinylation of Vinyl Ethers 251
3.1.1.3.1.1.1 With Aryl Halides in the Presence of a Halide Scavenger 252
3.1.1.3.1.1.2 With Aryl Halides in Ionic Liquids 256
3.1.1.3.1.1.3 With Aryl Halides in Aqueous Media 262
3.1.1.3.1.1.4 With Aryl Halides in Alcohols 265
3.1.1.3.1.1.5 With Hetaryl Halides in Ionic Liquids 271
3.1.1.3.1.1.6 With Hetaryl Halides in Aqueous Media 272
3.1.1.3.1.1.7 With Hetaryl Halides in Alcohols 272
3.1.1.3.1.1.8 With Aryl Trifluoromethanesulfonates 276
3.1.1.3.1.1.9 With Hetaryl 4-Toluenesulfonates 277
3.1.1.3.1.1.10 With Vinyl Halides 278
3.1.1.3.1.1.11 With Vinyl Trifluoromethanesulfonates 280
3.1.1.3.1.1.12 With Vinyl 4-Toluenesulfonates 281
3.1.1.3.1.1.13 With Vinyl Methanesulfonates 281
3.1.1.3.1.2 Regioselective a-Arylation and Vinylation of Enamides 282
3.1.1.3.1.2.1 With Aryl Trifluoromethanesulfonates 282
3.1.1.3.1.2.2 With Aryl Halides in Ionic Liquids 283
3.1.1.3.1.2.3 With Aryl Halides in Alcohols 284
3.1.1.3.1.2.4 With Hetaryl 4-Toluenesulfonates 286
3.1.1.3.1.2.5 With Vinyl Trifluoromethanesulfonates 287
3.1.1.3.1.2.6 With Vinyl 4-Toluenesulfonates 289
3.1.1.3.1.2.7 With Vinyl Methanesulfonates 290
3.1.1.3.1.3 Regioselective a-Arylation of In Situ Generated Enamines 290
3.1.1.3.1.4 Regioselective a-Arylation of Styrenes 293
3.1.1.3.1.5 Regioselective ß-Arylation and Vinylation of Vinyl Ethers 294
3.1.1.3.1.5.1 With Aroyl and Hetaroyl Chlorides 294
3.1.1.3.1.5.2 With Aryl Trifluoromethanesulfonates 295
3.1.1.3.1.5.3 With Aryl Halides 296
3.1.1.3.1.5.4 With Vinyl Trifluoromethanesulfonates 298
3.1.1.3.1.6 Effect of Ligands 300
3.1.1.3.2 Reaction with Arylboronic Acids or Derivatives or Aroyl Halides 304
3.1.1.3.2.1 Oxidative Heck Reactions 304
3.1.1.3.2.1.1 Regioselectivity 305
3.1.1.3.2.2 Reactions Using Enamides 308
3.1.1.3.2.2.1 With Arylboronic Acids Employing Conventional Heating 308
3.1.1.3.2.2.2 With Arylboronic Acids Using Microwave Heating 311
3.1.1.3.2.3 Reactions Using Vinyl Ethers 312
3.1.1.3.2.3.1 With Arylboronic Acids Employing Conventional Heating 312
3.1.1.3.2.3.2 With Arylboronic Acids Using Microwave Heating 314
3.1.1.3.2.3.3 With Arylboronic Acids under Continuous-Flow Conditions 315
3.1.1.3.2.3.4 With Aroyl Chlorides 316
3.1.1.3.2.4 Reactions Using Vinyl Acetate 318
3.1.1.3.2.4.1 With Arylboronic Acids Using Microwave Heating 318
3.1.1.3.2.4.2 With Arylboronic Acids under Continuous-Flow Conditions 319
3.1.1.3.3 Reaction with Nonaromatic Alkenyl Halides or Alkenyl Sulfonates 324
3.1.1.3.3.1 Using Vinyl Ethers 325
3.1.1.3.3.1.1 With Alkenyl Trifluoromethanesulfonates 325
3.1.1.3.3.1.2 With Alkenyl Halides 328
3.1.1.3.3.1.3 With Alkenyl 4-Toluenesulfonates and Methanesulfonates 331
3.1.1.3.3.2 Using Enamides 334
3.1.1.3.3.2.1 With Alkenyl Trifluoromethanesulfonates 334
3.1.1.3.3.2.2 With Alkenyl 4-Toluenesulfonates and Methanesulfonates 335
3.1.1.3.3.3 Using Linear Alkenes 337
3.1.1.3.3.3.1 With Alkenyl Halides 337
3.1.1.3.3.4 Using Trimethyl(vinyl)silane 338
3.1.1.3.3.4.1 With Alkenyl Trifluoromethanesulfonates 338
3.1.1.3.3.4.2 With Alkenyl Halides 339
3.1.1.4 Cyclic Alkenes as Reaction Components 342
3.1.1.4.1 Non-enantioselective Intermolecular Heck Reactions 343
3.1.1.4.1.1 Reactions of Cycloalkenes 343
3.1.1.4.1.2 Reactions of Oxygen-Containing Cyclic Alkenes 346
3.1.1.4.1.3 Reactions of Nitrogen-Containing Cyclic Alkenes 351
3.1.1.4.1.4 Reactions of Other Types of Cyclic Alkenes 354
3.1.1.4.2 Asymmetric Intermolecular Heck Reactions 356
3.1.1.4.2.1 Mechanism Overview 356
3.1.1.4.2.2 Reactions of Cycloalkenes 357
3.1.1.4.2.3 Reactions of Oxygen-Containing Cyclic Alkenes 359
3.1.1.4.2.3.1 Reactions of 2,3-Dihydrofuran and 2,2-Dialkyl-2,3-dihydrofurans 360
3.1.1.4.2.3.2 Reactions of 2,5-Dihydrofuran 376
3.1.1.4.2.3.3 Reactions of 3,4-Dihydro-2H-pyran 377
3.1.1.4.2.3.4 Reactions of 4,7-Dihydro-1,3-dioxepin 377
3.1.1.4.2.4 Reactions of Nitrogen-Containing Cyclic Alkenes 379
3.1.1.4.3 Conclusions 381
3.1.1.5 Alkenes with Metal-Directing Groups as Reaction Components 384
3.1.1.5.1 Using Vinyl Ethers 386
3.1.1.5.1.1 Regioselective ß-Arylation/ß-Vinylation 386
3.1.1.5.1.1.1 With Aryl Iodides 387
3.1.1.5.1.1.2 With Aryl Bromides 387
3.1.1.5.1.1.3 With Aryl or Vinyl Trifluoromethanesulfonates 389
3.1.1.5.1.1.4 With Arylboronic Acids 392
3.1.1.5.1.2 Regioselective Sequential ß,ß-Diarylation 393
3.1.1.5.1.2.1 With Aryl Iodides 393
3.1.1.5.1.2.2 With Aryl Bromides 395
3.1.1.5.1.2.3 With Aryl Chlorides 396
3.1.1.5.1.3 Asymmetric Arylation/Vinylation 396
3.1.1.5.1.3.1 With Aryl Iodides 397
3.1.1.5.1.3.2 With Aryl Bromides 398
3.1.1.5.1.3.3 With Aryl or Vinyl Chlorides 399
3.1.1.5.1.3.4 With Vinyl Trifluoromethanesulfonates 401
3.1.1.5.2 Using Vinylsilanes 401
3.1.1.5.2.1 Regioselective ß-Arylation/ß-Vinylation 402
3.1.1.5.2.1.1 With Aryl or Vinyl Iodides 402
3.1.1.5.2.1.2 With Organozinc and Grignard Reagents 404
3.1.1.5.2.2 Regioselective Sequential ß,ß-Diarylation 405
3.1.1.5.2.2.1 With Aryl Iodides 405
3.1.1.5.3 Using Vinyl Sulfides 406
3.1.1.5.3.1 Regioselective Sequential ß,ß-Diarylation 407
3.1.1.5.3.1.1 With Aryl Iodides 407
3.1.1.5.4 Using Vinyl Sulfoxides 408
3.1.1.5.4.1 Regioselective ß-Arylation 408
3.1.1.5.4.1.1 With Aryl Iodides 408
3.1.1.5.4.2 Asymmetric Arylation 409
3.1.1.5.4.2.1 With Aryl Iodides 409
3.1.1.5.5 Using Allylic Alcohols 410
3.1.1.5.5.1 With Aryl or Vinyl Iodides 411
3.1.1.5.5.2 With Vinyl Trifluoromethanesulfonates 413
3.1.1.5.5.3 With Iodonium Salts 414
3.1.1.5.6 Using Allylic Esters 415
3.1.1.5.6.1 With Aryl or Vinyl Halides 416
3.1.1.5.6.2 With Arylboronic Acids 417
3.1.1.5.6.3 With Arenediazonium Salts 418
3.1.1.5.6.4 With Arenes 420
3.1.1.5.7 Using Allylic Carbamates 421
3.1.1.5.7.1 With Aryl Iodides 421
3.1.1.5.8 Using Allylic Amines 422
3.1.1.5.8.1 Regioselective Arylation 422
3.1.1.5.8.1.1 With Aryl Iodides 422
3.1.1.5.8.1.2 With Aryl Trifluoromethanesulfonates 423
3.1.1.5.9 Using Allylic Sulfones 424
3.1.1.5.9.1 Regioselective Arylation 424
3.1.1.5.9.1.1 With Aryl Iodides 424
3.1.1.5.10 Using Other Alkenes 425
3.1.2 Intramolecular Reactions 430
3.1.2.1 Formation of Carbocycles 430
3.1.2.1.1 Construction of Five- and Six-Membered Carbocycles by Intramolecular Mizoroki--Heck Reactions 432
3.1.2.1.1.1 From Halides and Pseudohalides 432
3.1.2.1.1.1.1 By 5- and 6-exo-trig Processes 432
3.1.2.1.1.1.2 By 5- and 6-endo-trig Processes 447
3.1.2.1.1.2 By Matsuda--Heck Processes 452
3.1.2.1.1.3 By C--H Activation-Based Processes 453
3.1.2.1.2 Construction of Seven-Membered and Medium-Sized Carbocyclic Rings by Intramolecular Heck Reactions 459
3.1.2.1.3 Formation of Macrocarbocyclic Rings by Intramolecular Heck Reactions 463
3.1.2.1.4 Stereoselective Formation of Carbocycles by Intramolecular Heck Reactions 465
3.1.2.1.4.1 Diastereoselective Formation of Carbocycles 465
3.1.2.1.5 Intramolecular Heck-Type Processes Using Metals Other than Palladium 473
3.1.2.2 Formation of Heterocycles 480
3.1.2.2.1 Formation of N-Heterocycles 481
3.1.2.2.1.1 Formation of Five-Membered Rings 481
3.1.2.2.1.1.1 Formation of Indoles 481
3.1.2.2.1.1.2 Formation of Indolines 493
3.1.2.2.1.1.3 Formation of Oxindoles 497
3.1.2.2.1.1.4 Formation of Isoindolinones 500
3.1.2.2.1.1.5 Formation of Pyrrolidines 500
3.1.2.2.1.1.6 Formation of Pyrroles 508
3.1.2.2.1.1.7 Formation of Imidazoles 511
3.1.2.2.1.2 Formation of Six-Membered Rings 512
3.1.2.2.1.2.1 Formation of Isoquinolines 512
3.1.2.2.1.2.2 Formation of Isoquinolinones 518
3.1.2.2.1.2.3 Formation of Quinolines 524
3.1.2.2.1.2.4 Formation of Quinolinones 524
3.1.2.2.1.2.5 Formation of Piperidines 525
3.1.2.2.1.2.6 Formation of Pyrrolopyrimidines 527
3.1.2.2.1.2.7 Formation of Pyridines 528
3.1.2.2.1.3 Formation of Seven-Membered and Larger Rings 529
3.1.2.2.1.3.1 Formation of Azepines 529
3.1.2.2.1.3.2 Formation of Azocines and Larger N-Heterocycles 533
3.1.2.2.2 Formation of O-Heterocycles 535
3.1.2.2.2.1 Formation of Benzofurans 535
3.1.2.2.2.2 Formation of Furans 542
3.1.2.2.2.3 Formation of Lactones 543
3.1.2.2.2.4 Formation of Benzopyrans 544
3.1.2.2.2.5 Formation of Pyrans 547
3.1.2.2.2.6 Formation of Oxepins and Oxocins 549
3.1.2.2.3 Formation of S-Heterocycles 550
3.1.2.2.3.1 Formation of Benzothiophenes 550
3.1.2.2.3.2 Formation of Sultams 551
3.1.2.2.3.3 Formation of Thiocins 553
3.1.2.3 Stereoselective Formation of Tertiary and Quaternary Centers 560
3.1.2.3.1 Formation of Tertiary Centers from Acyclic Alkenes 563
3.1.2.3.1.1 Reactions of Aryl Iodides 563
3.1.2.3.1.1.1 Using Chiral Ligands 563
3.1.2.3.1.1.2 Using Chiral Substrates 564
3.1.2.3.1.2 Reactions of Aryl Bromides 566
3.1.2.3.1.2.1 Using Chiral Substrates 566
3.1.2.3.2 Formation of Tertiary Centers from Cyclic Alkenes 567
3.1.2.3.2.1 Reactions of Aryl Iodides 567
3.1.2.3.2.1.1 Using Chiral Ligands 567
3.1.2.3.2.1.2 Using Chiral Substrates 568
3.1.2.3.2.2 Reactions of Aryl Bromides 570
3.1.2.3.2.2.1 Using Chiral Ligands 570
3.1.2.3.2.2.2 Using Chiral Substrates 571
3.1.2.3.2.3 Reactions of Aryl Trifluoromethanesulfonates 574
3.1.2.3.2.3.1 Using Chiral Ligands 574
3.1.2.3.2.3.2 Using Chiral Substrates 574
3.1.2.3.2.4 Reactions of Vinyl Iodides 575
3.1.2.3.2.4.1 Using Chiral Ligands 575
3.1.2.3.2.4.2 Using Chiral Substrates 578
3.1.2.3.2.5 Reactions of Vinyl Bromides 579
3.1.2.3.2.5.1 Using Chiral Ligands 579
3.1.2.3.2.6 Reactions of Vinyl Trifluoromethanesulfonates 580
3.1.2.3.2.6.1 Using Chiral Ligands 580
3.1.2.3.2.6.2 Using Chiral Substrates 584
3.1.2.3.3 Formation of Quaternary Centers from Acyclic Alkenes 586
3.1.2.3.3.1 Reactions of Aryl Iodides 586
3.1.2.3.3.1.1 Using Chiral Ligands 586
3.1.2.3.3.1.2 Using Chiral Substrates 592
3.1.2.3.3.2 Reactions of Aryl Trifluoromethanesulfonates 594
3.1.2.3.3.2.1 Using Chiral Ligands 594
3.1.2.3.3.2.2 Using Chiral Substrates 601
3.1.2.3.3.3 Reactions of Vinyl Trifluoromethanesulfonates 602
3.1.2.3.3.3.1 Using Chiral Ligands 602
3.1.2.3.3.3.2 Using Chiral Substrates 604
3.1.2.3.4 Formation of Quaternary Centers from Cyclic Alkenes 604
3.1.2.3.4.1 Reactions of Aryl Iodides 605
3.1.2.3.4.1.1 Using Chiral Ligands 605
3.1.2.3.4.1.2 Using Chiral Substrates 607
3.1.2.3.4.2 Reactions of Aryl Bromides 608
3.1.2.3.4.2.1 Using Chiral Ligands 608
3.1.2.3.4.2.2 Using Chiral Substrates 609
3.1.2.3.4.3 Reactions of Aryl Trifluoromethanesulfonates 613
3.1.2.3.4.3.1 Using Chiral Ligands 613
3.1.2.3.4.4 Reactions of Vinyl Trifluoromethanesulfonates 619
3.1.2.3.4.4.1 Using Chiral Substrates 619
3.2 C--C Cross Coupling via Single C--H Activation 624
3.2.1 Intermolecular Coupling via C(sp2)--H Activation 624
3.2.1.1 Nondirected Arylation of Benzene 626
3.2.1.1.1 Palladium-Catalyzed Methods 626
3.2.1.1.1.1 Nondirected Palladium-Catalyzed Arylation of Benzene with Aryl Halides 626
3.2.1.1.1.2 Nondirected Palladium-Catalyzed Arylation of Benzene Derivatives with Carboxylic Acids 628
3.2.1.1.2 Copper-Catalyzed Methods for the meta and para Arylation of Simple Arenes 630
3.2.1.2 Arylation of Benzene Derivatives Containing Directing Groups 632
3.2.1.2.1 Carbonyl Directing Groups 632
3.2.1.2.1.1 Palladium-Catalyzed Methods 633
3.2.1.2.1.2 Palladium-Catalyzed Reactions Employing Additional Oxidants 634
3.2.1.2.1.3 Ruthenium-Catalyzed Methods 636
3.2.1.2.2 Amine, Imine, and Azole-Type Directing Groups 637
3.2.1.2.2.1 Palladium-Catalyzed Methods 637
3.2.1.2.2.1.1 Amine Directing Groups 637
3.2.1.2.2.1.2 Imine and Oxime Directing Groups 638
3.2.1.2.2.1.3 Pyridine Directing Groups 640
3.2.1.2.2.2 Rhodium-Catalyzed Methods 642
3.2.1.2.2.3 Rhodium-Catalyzed Reactions Employing Additional Oxidants 643
3.2.1.2.2.4 Ruthenium-Catalyzed Methods 645
3.2.1.2.2.5 Iron-Catalyzed Methods 648
3.2.1.2.3 Alcohol Directing Groups 649
3.2.1.2.3.1 Rhodium-Catalyzed ortho Arylation of Phenols 649
3.2.1.2.4 Carboxylic Acid Directing Groups 651
3.2.1.2.4.1 Palladium-Catalyzed Methods 651
3.2.1.3 Arylation of Indoles 652
3.2.1.3.1 Palladium-Catalyzed Arylation of Indoles with Aryl Halides 652
3.2.1.3.2 Rhodium-Catalyzed Arylation of Indoles with Aryl Halides 654
3.2.1.3.3 Copper-Catalyzed Arylation of Indoles with Aryl Iodides 655
3.2.1.3.4 Palladium-Catalyzed Arylation of Indoles with Benzoic Acids 655
3.2.1.3.5 Palladium-Catalyzed Arylation of Indoles with Arylboronic Acids, Aryltrifluoroborates, or Trialkoxy(aryl)silanes 657
3.2.1.4 Arylation of Indolizines 658
3.2.1.4.1 Palladium-Catalyzed Methods 658
3.2.1.5 Arylation of Pyrroles 659
3.2.1.5.1 Palladium-Catalyzed Methods 659
3.2.1.5.2 Rhodium-Catalyzed Methods 660
3.2.1.6 Arylation of Furans and Benzofurans 661
3.2.1.7 Arylation of Thiophenes and Benzothiophenes 662
3.2.1.7.1 Palladium-Catalyzed Methods 662
3.2.1.7.2 Rhodium-Catalyzed Methods 664
3.2.1.7.3 Copper-Catalyzed Methods 664
3.2.1.8 Arylation of Pyridines 665
3.2.1.8.1 Palladium-Catalyzed Arylation of Pyridines 665
3.2.1.8.2 Palladium-Catalyzed Arylation of Pyridine 1-Oxides 667
3.2.1.8.3 Rhodium-Catalyzed Methods 667
3.2.1.8.4 Nickel-Catalyzed Methods 668
3.2.1.8.5 Copper-Catalyzed Arylation of Pyridine 1-Oxides 669
3.2.1.9 Arylation of Pyrazine 1-Oxides 669
3.2.1.9.1 Palladium-Catalyzed Methods 669
3.2.1.10 Arylation of Pyridazines 670
3.2.1.10.1 Copper-Catalyzed Methods 670
3.2.1.11 Arylation of Imidazoles, Oxazoles, and Thiazoles 671
3.2.1.11.1 Palladium-Catalyzed Methods 671
3.2.1.11.2 Rhodium-Catalyzed Methods 673
3.2.1.11.3 Copper-Catalyzed Methods 674
3.2.1.12 Arylation of Isoxazoles 675
3.2.1.12.1 Palladium-Catalyzed Methods 675
3.2.1.13 Arylation of Pyrazoles 675
3.2.1.13.1 Palladium-Catalyzed Methods 675
3.2.1.14 Arylation of Triazoles 677
3.2.1.14.1 Palladium-Catalyzed Methods 677
3.2.2 Intramolecular Coupling via C(sp2)--H Activation 682
3.2.2.1 Addition to Alkenes 682
3.2.2.1.1 The Fujiwara--Moritani Annulation 682
3.2.2.1.1.1 Ligand-Promoted Synthesis, Including Enantioselective Synthesis 684
3.2.2.1.1.2 Ligandless Synthesis 689
3.2.2.1.1.3 Synthesis with Stoichiometric Palladium Complexes 692
3.2.2.1.2 Hydroarylation 694
3.2.2.1.2.1 Rhodium-Catalyzed Stereoselective Hydroarylation 695
3.2.2.1.2.2 Rhodium-Catalyzed Annulation of Heterocycles 698
3.2.2.1.2.3 Ruthenium-Catalyzed Hydroarylation 702
3.2.2.2 Addition to Ketones 704
3.2.2.3 Addition to Alkynes 705
3.2.2.3.1 5-exo-dig Cyclization 706
3.2.2.3.2 5-endo-dig Cyclization 709
3.2.2.4 Coupling with C--X Groups (X = Halogen, Trifluoromethanesulfonate) 713
3.2.2.4.1 General Method for Aryl Chlorides, Bromides, Iodides, and Trifluoromethanesulfonates 716
3.2.2.4.2 General Methods for Bromides and Iodides 722
3.2.2.4.2.1 Under Ligandless Conditions 722
3.2.2.4.2.2 Using Triphenylphosphine with Acetate Base 726
3.2.2.4.2.3 Using Bidentate Arylphosphines 731
3.2.2.4.2.4 Using Herrmann's Palladacycle 733
3.2.2.4.2.5 Using Heterogeneous Palladium Catalysts 736
3.2.2.4.3 Coupling with C--I Groups 738
3.2.2.4.4 Coupling with C--Br Groups 741
3.2.2.4.4.1 Coupling with Aryl Bromides 741
3.2.2.4.4.2 Coupling with Alkenyl Bromides 744
3.2.2.4.5 Coupling with C--Cl Groups 747
3.2.2.4.5.1 Coupling with Aryl Chlorides 747
3.2.2.4.5.2 Coupling with Alkyl Chlorides 750
3.2.2.4.6 Coupling with C--OTf Groups 754
3.2.2.4.6.1 Coupling with Aryl Trifluoromethanesulfonates 754
3.2.2.4.6.2 Coupling with Alkenyl Trifluoromethanesulfonates 756
3.2.2.5 Coupling with Arenecarboxylic Acids 759
3.2.3 Coupling via C(sp3)--H Activation under Palladium Catalysis 764
3.2.3.1 Arylation 765
3.2.3.1.1 Palladium(0)/(II)-Catalyzed Arylations 765
3.2.3.1.1.1 Arylations Using Prefunctionalized Reagents 765
3.2.3.1.1.1.1 Intramolecular Arylations 765
3.2.3.1.1.1.2 Intermolecular Arylations 778
3.2.3.1.1.2 Arylations without Prefunctionalized Arylating Reagents 785
3.2.3.1.2 Palladium(II)/(IV)-Catalyzed Arylations 787
3.2.3.2 Carbonylation and Alkenylation 791
3.2.3.3 Alkylation 797
3.2.3.4 Enantioselective Reactions 809
3.2.3.5 Applications in the Synthesis of Bioactive Molecules 816
3.2.3.6 Summary and Future Outlook 819
3.3 C--C Cross Coupling via Double C--H Activation 824
3.3.1 Intermolecular C--C Bond Formation 824
3.3.1.1 Reaction in the Absence of a Directing Group 825
3.3.1.1.1 Reaction of 1H-Indoles, 1H-Pyrroles, or Benzofurans with Unactivated Arenes 825
3.3.1.1.2 Reaction of Azoles with Unactivated Arenes or with Hetarenes 828
3.3.1.1.3 Reaction of Hetarene N-Oxides with Unactivated Arenes or with Hetarenes 830
3.3.1.1.4 Reaction of Fluorinated Arenes with Unactivated Arenes or with Hetarenes 833
3.3.1.1.5 Reaction of Two Different Hetarenes under Copper Catalysis 835
3.3.1.2 Reaction Involving a Directing Group 836
3.3.1.2.1 Ring-Nitrogen-Directed C--H Bond Activation 836
3.3.1.2.2 Amide-Directed C--H Bond Activation 838
3.3.1.2.3 Carbamate-Directed C--H Bond Activation 843
3.3.2 Intramolecular C--C Bond Formation 845
3.3.2.1 Five-Membered Ring Formation 845
3.3.2.1.1 Synthesis of Carbazoles 845
3.3.2.1.2 Synthesis of Dibenzofurans 847
3.3.2.1.3 Synthesis of Indole Derivatives 847
3.3.2.2 Six-Membered Ring Formation 847
3.3.2.2.1 Synthesis of Phenanthridinones 847
3.3.2.2.2 Synthesis of Fused 1,2,3-Triazole Derivatives 848
3.3.2.3 Seven-Membered and Larger Ring Formation 849
Keyword Index 852
Author Index 900
Abbreviations 924
List of All Volumes 932

Erscheint lt. Verlag 14.5.2014
Verlagsort Stuttgart
Sprache englisch
Themenwelt Naturwissenschaften Chemie Organische Chemie
Technik
Schlagworte Alkenes • Alkenyl Sulfonates • Allylic substitution • Arenecarboxylic Acids • Arene Derivatives • Arylboronic Acids • Arylmetals • Carbocycles • C-H Activation • C-H Couplings • Chemische Synthese • chemistry reference work • cross-coupling • Cross Coupling • cross coupling reaction • cross-coupling reaction • Cyclic Alkenes • Functional Group • halides • Heck Reaction • Heck-Type Reactions • Hetarenecarboxylic Acids • Hetarene Derivatives • hetarenes • Hetarylmetals • Heterocycles • Homologues • Method • Organic Chemistry • organic chemistry functional groups • organic chemistry reactions • organic chemistry review • organic chemistry synthesis • organic method • organic reaction • Organic Syntheses • organic synthesis • organic synthesis reference work • Organische Chemie • Palladium Catalysis • Peptide synthesis • Practical • practical organic chemistry • reference work • Review • review organic synthesis • review synthetic methods • Stereoselective Formation • Sulfonates • Suzuki reaction • Synthese • Synthetic chemistry • Synthetic Methods • Synthetic Organic Chemistry • synthetic transformation
ISBN-10 3-13-179091-1 / 3131790911
ISBN-13 978-3-13-179091-0 / 9783131790910
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 9,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Wasserzeichen)
Größe: 30,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Basiswissen der Chemie

von Charles E. Mortimer; Ulrich Müller

eBook Download (2019)
Georg Thieme Verlag KG
CHF 82,95