Science of Synthesis: Houben-Weyl Methods of Molecular Transformations Vol. 47b (eBook)
670 Seiten
Thieme (Verlag)
978-3-13-172281-2 (ISBN)
Science of Synthesis – Volume 47b: Alkenes 1
Title page 3
Imprint 5
Preface 6
Volume Editor’s Preface 8
Overview 10
Table of Contents 12
47.1 Product Class 1: Alkenes 24
47.1.3 Synthesis by Pericyclic Reactions 24
47.1.3.1 Diels--Alder Reactions 24
47.1.3.1.1 Thermal Diels--Alder Reactions 42
47.1.3.1.1.1 Method 1: Reactions of Carbonyl Dienophiles 42
47.1.3.1.1.1.1 Variation 1: Synthesis of Cyclohexenecarbaldehydes 42
47.1.3.1.1.1.2 Variation 2: Synthesis of Acetylcyclohexenes 48
47.1.3.1.1.1.3 Variation 3: Synthesis of Cyclohexenecarboxylic Acids and Alkyl Cyclohexenecarboxylates 54
47.1.3.1.1.1.4 Variation 4: Synthesis of Dialkyl Cyclohexenedicarboxylates 60
47.1.3.1.1.1.5 Variation 5: Synthesis of Cyclohexenecarboxylic Acids, Cyclohexene carbonyl Chlorides, Cyclohexenecarboxamides, and Cyclohexenyl Silyl Ketones 64
47.1.3.1.1.1.6 Variation 6: Synthesis of Cyclohexenes Fused to Carbo- and Heterocycles 67
47.1.3.1.1.1.7 Variation 7: Synthesis of Bridged Cyclohexenes 82
47.1.3.1.1.2 Method 2: Reactions of Other Vinyl Dienophiles 94
47.1.3.1.1.2.1 Variation 1: Synthesis of Nitrocyclohexenes 94
47.1.3.1.1.2.2 Variation 2: Synthesis of Cyclohexenylboranes 97
47.1.3.1.1.2.3 Variation 3: Synthesis of Cyclohexenecarbonitriles 101
47.1.3.1.1.2.4 Variation 4: Synthesis of Cyclohex-3-enyl Phenyl Sulfones 104
47.1.3.1.1.2.5 Variation 5: Synthesis of (Hydroxyalkyl)cyclohexenes 107
47.1.3.1.1.2.6 Variation 6: Synthesis of Cyclohexenes from Unusual Dienophiles 111
47.1.3.1.1.3 Method 3: Synthesis of Cyclohexenyl-Substituted Fischer Carbene Complexes 114
47.1.3.1.1.4 Method 4: Synthetic Applications of Diels--Alder Reactions 118
47.1.3.1.2 Catalyzed Diels--Alder Reactions in Conventional Organic Media 123
47.1.3.1.2.1 Method 1: Reactions Using Classic Lewis Acid Catalysts 125
47.1.3.1.2.2 Method 2: Reactions Using Chiral Lewis Acid Catalysts 134
47.1.3.1.2.3 Method 3: Reactions Using Brønsted Acid Catalysts 138
47.1.3.1.2.4 Method 4: Reactions Using Chiral Organocatalysts 142
47.1.3.1.2.5 Method 5: Lewis Acid Catalyzed Diels--Alder Reactions of Chiral Dienophiles or Dienes 145
47.1.3.1.2.5.1 Variation 1: With Chiral Dienophiles 145
47.1.3.1.2.5.2 Variation 2: With Chiral Dienes 150
47.1.3.1.2.6 Method 6: Reactions Using Heterogeneous Catalysts 152
47.1.3.1.3 Diels--Alder Reactions in Unconventional Media 157
47.1.3.1.3.1 Method 1: Reactions in Water 157
47.1.3.1.3.1.1 Variation 1: Without a Catalyst 157
47.1.3.1.3.1.2 Variation 2: With a Lewis Acid Catalyst 160
47.1.3.1.3.1.3 Variation 3: With Organocatalysts 163
47.1.3.1.3.1.4 Variation 4: In Supercritical Water 164
47.1.3.1.3.1.5 Variation 5: In Pseudo-Biological Systems or Promoted by Biocatalysts 165
47.1.3.1.3.2 Method 2: Reactions in Nonaqueous Solvents and Their Salt Solutions 167
47.1.3.1.3.3 Method 3: Reactions in Ionic Liquids 170
47.1.3.1.4 Diels--Alder Reactions Induced by Other Physical Means 175
47.1.3.1.4.1 Method 1: Diels--Alder Reactions Promoted by Microwave Irradiation 175
47.1.3.1.4.2 Method 2: Diels--Alder Reactions Promoted by High Pressure 178
47.1.3.1.4.3 Method 3: Ultrasound-Assisted Diels--Alder Reactions 182
47.1.3.1.4.4 Method 4: Photoinduced Diels--Alder Reactions 185
47.1.3.2 Ene Reactions 200
47.1.3.2.1 Method 1: Thermal Ene Reactions 202
47.1.3.2.1.1 Variation 1: Intermolecular Ene Reactions 202
47.1.3.2.1.2 Variation 2: Reactions of 1,n-Dienes 203
47.1.3.2.2 Method 2: Metallo-Ene Reactions of Allylmetal Species 206
47.1.3.2.2.1 Variation 1: Reactions Using Alkenes as Enophiles, Followed by Protonolysis 206
47.1.3.2.2.2 Variation 2: Reactions Using Vinylmetals as Enophiles, Followed by Protonolysis 209
47.1.3.2.3 Method 3: Metal-Catalyzed Metallo-Ene Reactions 210
47.1.3.2.3.1 Variation 1: Palladium-Catalyzed Metallo-Ene Reactions Terminated by Transmetalation and Protonation 210
47.1.3.2.3.2 Variation 2: Palladium-Catalyzed Metallo-Ene Reactions Terminated by Hydride Capture 211
47.1.3.2.4 Method 4: Metal-Catalyzed Rearrangements 212
47.1.3.2.5 Method 5: Retro-Ene Reactions of All-Carbon Ene Adducts 213
47.1.3.2.5.1 Variation 1: Reactions of Homoallylic Alcohols 213
47.1.3.2.5.2 Variation 2: Reactions of Allyldiazenes 213
47.1.3.2.5.3 Variation 3: Reactions of Alk-2-enesulfinic Acid Derivatives 214
47.1.3.3 Synthesis by Electrocyclic Reactions 218
47.1.3.3.1 Method 1: Rearrangement of 4p-Electron Systems 218
47.1.3.3.1.1 Variation 1: Rearrangement of Acyclic 1,3-Dienes 218
47.1.3.3.1.2 Variation 2: Rearrangement of Cyclic 1,3-Dienes 219
47.1.3.3.1.3 Variation 3: Rearrangement of 1,2-Dimethylene-Substituted Cycloalkanes 221
47.1.3.3.1.4 Variation 4: Rearrangement of 1,2-Dimethylene-Substituted Heterocycles 222
47.1.3.3.2 Method 2: Rearrangement of 2p-Electron Systems 223
47.1.3.3.2.1 Variation 1: Solvolysis of Chlorocyclopropanes 223
47.1.3.3.2.2 Variation 2: Solvolysis of Cyclopropyl 4-Toluenesulfonates 225
47.1.3.3.3 Method 3: Cope Rearrangement 226
47.1.3.3.3.1 Variation 1: Rearrangement of Acyclic 1,5-Dienes 226
47.1.3.3.3.2 Variation 2: Rearrangement of Cyclic 1,5-Dienes 228
47.1.3.3.3.3 Variation 3: Rearrangement of 1,2-Divinylcycloalkanes 229
47.1.4 Synthesis by Elimination Reactions 234
47.1.4.1 Method 1: Synthesis by Decarbonylative Elimination 234
47.1.4.1.1 Variation 1: Oxidative Decarboxylation of Carboxylic Acids 234
47.1.4.1.2 Variation 2: Oxidative Decarboxylation of Acid Anhydrides 235
47.1.4.1.3 Variation 3: Decarbonylation of Acid Halides and Aldehydes 236
47.1.4.1.4 Variation 4: Decarbonylative Reactions of ß,.-Unsaturated Acids 236
47.1.4.1.5 Variation 5: Decarbonylative Elimination from ß-Halo- and ß-Hydroxycarboxylic Acids 237
47.1.4.1.6 Variation 6: Fragmentation of ß-Lactones 239
47.1.4.1.7 Variation 7: Fragmentation of 1,3-Diketones 240
47.1.4.1.8 Variation 8: Grob Fragmentation 241
47.1.4.2 Method 2: Oxidative Decarboxylation of Dicarboxylic Acid Derivatives 241
47.1.4.2.1 Variation 1: Oxidative Decarboxylation of 1,2-Dicarboxylic Acid Derivatives 241
47.1.4.2.2 Variation 2: Oxidative Decarboxylation of 1,3-Dicarboxylic Acids 243
47.1.4.3 Method 3: Base-Catalyzed and Solvolytic HX Elimination 243
47.1.4.3.1 Variation 1: Elimination from Alkyl Halides 243
47.1.4.3.2 Variation 2: Elimination from Ethers and Sulfides 251
47.1.4.3.3 Variation 3: Elimination from Metal Alkoxides 253
47.1.4.3.4 Variation 4: Elimination from Ammonium Salts 255
47.1.4.3.5 Variation 5: Elimination from Sulfonium Salts 257
47.1.4.3.6 Variation 6: Solvolytic and Base-Catalyzed Elimination from 4-Toluenesulfonates and Other Sulfonates 258
47.1.4.4 Method 4: Acid-Catalyzed HX Elimination 262
47.1.4.4.1 Variation 1: Acid-Catalyzed Dehydration of Alcohols 262
47.1.4.4.2 Variation 2: Dehydration of Alcohols Using Lewis Acids and Heterogeneous Catalysts 266
47.1.4.4.3 Variation 3: Dehydration of Alcohols with Other Systems 270
47.1.4.5 Method 5: Pyrolytic HX Elimination 275
47.1.4.5.1 Variation 1: Pyrolysis of Alkyl Halides 275
47.1.4.5.2 Variation 2: Pyrolysis of Esters 276
47.1.4.5.3 Variation 3: Pyrolysis of Xanthates, Thiocarbamates, Thiophosphates, Arenesulfonates, Sulfamates, and Sulfuranes 279
47.1.4.5.4 Variation 4: Cope Elimination from N-Oxides 284
47.1.4.5.5 Variation 5: Thermolytic Elimination from Ammonium Hydroxides 287
47.1.4.5.6 Variation 6: Thermolytic Elimination from Phosphonium Salts 288
47.1.4.5.7 Variation 7: Thermolytic Elimination from Alkyl Selenoxides 289
47.1.4.5.8 Variation 8: Thermolytic Dehydration of Alcohols in Dimethyl Sulfoxide or Hexamethylphosphoric Triamide 290
47.1.4.6 Method 6: Reductive Elimination from Halohydrins and Their Esters or Ethers 292
47.1.4.6.1 Variation 1: Dehalogenation of Vicinal Dihalides 292
47.1.4.6.2 Variation 2: Elimination from Halohydrins 295
47.1.4.6.3 Variation 3: Elimination from Halohydrin Esters 296
47.1.4.6.4 Variation 4: Elimination from Halohydrin Ethers 297
47.1.4.6.5 Variation 5: Elimination from vic-Diols 299
47.1.4.6.6 Variation 6: Elimination from vic-Diol Disulfonates 301
47.1.4.7 Method 7: Reductive Elimination of X2 from Fragments of the Type CX2--CH2 303
47.1.4.7.1 Variation 1: Dehalogenation of Geminal Dihalides 303
47.1.4.7.2 Variation 2: Elimination of Nitrogen from Diazo Compounds 304
47.1.4.8 Method 8: Reductive Extrusions from Three- to Five-Membered Heterocycles 304
47.1.4.8.1 Variation 1: From Oxiranes 304
47.1.4.8.2 Variation 2: From Thiiranes and Thiirane 1,1-Dioxides 307
47.1.4.8.3 Variation 3: Ramberg--Bäcklund Reaction 310
47.1.4.8.4 Variation 4: From Aziridines 311
47.1.4.8.5 Variation 5: From 1,3-Dioxolane- and 1,3-Dithiolane-2-thiones 312
47.1.4.8.6 Variation 6: From 2-Alkoxy- and 2-(Dimethylamino)-1,3-dioxolanes 314
47.1.4.9 Method 9: Reactions of Ketone (Arylsulfonyl)hydrazones 316
47.1.4.9.1 Variation 1: The Bamford--Stevens Reaction 317
47.1.4.9.2 Variation 2: The Shapiro Reaction 323
47.1.4.9.3 Variation 3: Sequential Transformations Based on the Shapiro Reaction 329
47.1.4.10 Method 10: Dehydrogenation of CH2--CH2 Fragments 334
47.1.5 Synthesis from Alkynes by Addition Reactions 346
47.1.5.1 [2+2]-Cycloaddition Reactions 346
47.1.5.1.1 Method 1: Photochemical and Microwave-Assisted Reactions 346
47.1.5.1.1.1 Variation 1: From Diphenylacetylene 346
47.1.5.1.1.2 Variation 2: From Diynes, Triynes, and Vinylacetylene 347
47.1.5.1.1.3 Variation 3: Intramolecular Reactions 349
47.1.5.1.2 Method 2: Thermocatalytic Reactions 350
47.1.5.1.2.1 Variation 1: Lewis Acid Catalyzed [2+2] Cycloadditions 350
47.1.5.1.2.2 Variation 2: Reactions Catalyzed by Nickel, Ruthenium, and Cobalt Complexes 351
47.1.5.1.2.3 Variation 3: Zirconocene-Catalyzed Cyclobutene Formation 355
47.1.5.2 Hydrogenation Reactions 360
47.1.5.2.1 Method 1: Catalytic Hydrogenation 360
47.1.5.2.2 Method 2: Chemical Reduction 362
47.1.5.2.2.1 Variation 1: Reduction with Metals 362
47.1.5.2.2.2 Variation 2: Reduction by Hydrometalation--Protodemetalation 365
47.1.5.3 Hydrometalation and Subsequent Coupling Reactions 372
47.1.5.3.1 Method 1: syn-Hydrometalation Reactions of Alkynes Producing E-ß-Mono-, syn-a,ß-Di-, and anti-a,ß-Disubstituted Alkenylmetals 381
47.1.5.3.1.1 Variation 1: syn-Hydrometalation of Alkynes Involving Group 1, 2, 11, and 12 Metals 381
47.1.5.3.1.2 Variation 2: Hydroboration of Alkynes 382
47.1.5.3.1.3 Variation 3: Substitution of Boron in the Hydroboration Products with Hydrogen and Heteroatoms 384
47.1.5.3.1.4 Variation 4: C--C Bond-Forming Reactions That Are Unique to Organoboranes 386
47.1.5.3.1.5 Variation 5: Hydroalumination and Hydrozirconation of Alkynes 388
47.1.5.3.1.6 Variation 6: Substitution of the Metal in Alkenylaluminum and Alkenylzirconium Compounds with Hydrogen or Deuterium, Halogens, Other Heteroatoms, Metals, and Carbon 392
47.1.5.3.2 Method 2: anti-Hydrometalation Reactions of Alkynes Producing Z-ß-Mono- and anti-a,ß-Disubstituted Alkenylmetals 395
47.1.5.3.2.1 Variation 1: anti-Hydroalumination of Alkynes with Hydroaluminates 395
47.1.5.3.2.2 Variation 2: Other anti-Hydrometalation Reactions of Alkynes 396
47.1.5.3.2.3 Variation 3: Useful Alternatives to anti-Hydrometalation of Alkynes 396
47.1.5.3.3 Method 3: Palladium-Catalyzed Cross-Coupling Reactions of Alkenylmetals or Alkenyl Electrophiles Prepared by Alkyne Hydrometalation 398
47.1.5.3.3.1 Variation 1: 1,2-Disubstituted E-Alkenes via ß-Monosubstituted E-Alkenyl Derivatives 400
47.1.5.3.3.2 Variation 2: 1,2-Disubstituted E-Alkenes via ß-Monosubstituted E-Alkenyl Derivatives Preparable by Methods Other Than Hydrometalation 413
47.1.5.3.3.3 Variation 3: 1,2-Disubstituted Z-Alkenes via ß-Monosubstituted Z-Alkenyl Derivatives Preparable by Alkyne Hydrometalation, Ethyne Carbocupration, and Other Methods 416
47.1.5.3.3.4 Variation 4: Trisubstituted Alkenes via syn-a,ß-Disubstituted Alkenyl Derivatives Preparable by Alkyne syn-Hydrometalation and Other Methods 420
47.1.5.3.3.5 Variation 5: Trisubstituted Alkenes via anti-a,ß-Disubstituted Alkenyl Derivatives Prepared by Alkyne syn- or anti-Hydrometalation and Other Methods Not Involving Elementometalation 425
47.1.5.4 Carbometalation and Subsequent Coupling Reactions 434
47.1.5.4.1 Method 1: Syntheses of Trisubstituted Alkenes via Zirconium-Catalyzed syn-Carboalumination of Alkynes 441
47.1.5.4.2 Method 2: Syntheses of Trisubstituted Alkenes by Carbocupration of Alkynes 461
47.1.5.4.2.1 Variation 1: syn-Carbocupration of Alkynes 461
47.1.5.4.2.2 Variation 2: Copper-Catalyzed anti-Carbomagnesiation of Propargyl Alcohols 465
47.1.5.4.3 Method 3: Synthesis of Trisubstituted Alkenes via syn-Haloboration of Alkynes 466
47.1.5.4.4 Method 4: Synthesis of Trisubstituted Alkenes via ß,ß-Disubstituted Alkenyl Derivatives Prepared by Miscellaneous Other Methods 470
47.1.5.4.5 Method 5: Synthesis of Tetrasubstituted Alkenes via Trisubstituted Alkenyl Derivatives 473
47.1.6 Synthesis from Arenes and Polyenes by Addition Reactions 480
47.1.6.1 Synthesis from Arenes 480
47.1.6.1.1 Method 1: Reduction by Metals in Liquid Ammonia 480
47.1.6.1.1.1 Variation 1: Reduction by Lithium and Added Ethanol 480
47.1.6.1.1.2 Variation 2: Reduction by Sodium and Added Ethanol 481
47.1.6.1.1.3 Variation 3: Reduction by Potassium and Added tert-Butyl Alcohol 481
47.1.6.1.1.4 Variation 4: Reduction by Calcium 481
47.1.6.1.2 Method 2: Reduction by Lithium and Alkylamines 482
47.1.6.1.2.1 Variation 1: Reduction in Methylamine or Ethylamine 482
47.1.6.1.2.2 Variation 2: Reduction in Ethylenediamine 482
47.1.6.1.2.3 Variation 3: Reduction in Mixed-Amine Systems 482
47.1.6.1.3 Method 3: Electrochemical Reduction in Methylamine 483
47.1.6.1.4 Method 4: Reduction by Sodium and tert-Butyl Alcohol 483
47.1.6.2 Synthesis from 1,2-Dienes (Allenes) 483
47.1.6.2.1 Method 1: Reduction by Addition of Hydrogen 483
47.1.6.2.1.1 Variation 1: Catalytic Hydrogenation 483
47.1.6.2.1.2 Variation 2: Transfer Hydrogenation Using Ammonium Formate 485
47.1.6.2.1.3 Variation 3: Reduction by Lithium or Sodium in Liquid Ammonia 485
47.1.6.2.1.4 Variation 4: Reduction by Sodium and Ethanol 485
47.1.6.2.1.5 Variation 5: Reduction by the Zinc--Copper Couple 486
47.1.6.2.1.6 Variation 6: Reduction by Diimide 486
47.1.6.2.1.7 Variation 7: Reduction by Red Phosphorus and Hydriodic Acid 486
47.1.6.2.1.8 Variation 8: Reduction by Borane 487
47.1.6.2.1.9 Variation 9: Reduction by Aluminum Hydrides 487
47.1.6.2.1.10 Variation 10: Reduction by Baker's Yeast 487
47.1.6.2.1.11 Variation 11: Miscellaneous Variations 487
47.1.6.2.2 Method 2: Synthesis by Hydrocarbonation (Addition of Carbon and Hydrogen) 487
47.1.6.2.2.1 Variation 1: Hydrocarbonation Using a Grignard Reagent 488
47.1.6.2.2.2 Variation 2: Hydrocarbonation Using Arylboronates 488
47.1.6.2.2.3 Variation 3: Hydrocarbonation Using Stabilized Carbanions 488
47.1.6.2.2.4 Variation 4: Hydrocarbonation by Hydrozirconation Followed by Zinc-Mediated Claisen Rearrangement 489
47.1.6.2.2.5 Variation 5: Hydrocarbonation by Reductive Coupling to Carbonyl Compounds 490
47.1.6.3 Synthesis from 1,3-Dienes or Fully Conjugated Polyenes 491
47.1.6.3.1 Synthesis by Addition of Hydrogen 491
47.1.6.3.1.1 Method 1: Catalytic Hydrogenation 491
47.1.6.3.1.1.1 Variation 1: Hydrogenation Using Chromium or Molybdenum Catalysts 491
47.1.6.3.1.1.2 Variation 2: Hydrogenation Using Nickel Catalysts 492
47.1.6.3.1.1.3 Variation 3: Hydrogenation Using Palladium Catalysts 493
47.1.6.3.1.1.4 Variation 4: Hydrogenation Using Platinum Catalysts 494
47.1.6.3.1.1.5 Variation 5: Hydrogenation Using Other Metal Catalysts 495
47.1.6.3.1.2 Method 2: Dissolving Metal Reduction 496
47.1.6.3.1.2.1 Variation 1: Reduction by Lithium and Ammonia 496
47.1.6.3.1.2.2 Variation 2: Reduction by Sodium and Ammonia 496
47.1.6.3.1.2.3 Variation 3: Reduction by Sodium Amalgam 497
47.1.6.3.1.2.4 Variation 4: Reduction by Sodium and an Alcohol 498
47.1.6.3.1.2.5 Variation 5: Reduction by Magnesium 499
47.1.6.3.1.2.6 Variation 6: Reduction by Aluminum Amalgam 499
47.1.6.3.1.2.7 Variation 7: Reduction by Zinc and Acetic Acid 499
47.1.6.3.1.3 Method 3: Reduction by Sodium Borohydride with Iodine or Disodium Tetracyanonickelate 500
47.1.6.3.1.4 Method 4: Reduction by Diisobutylaluminum Hydride 500
47.1.6.3.1.5 Method 5: Reduction by Platinum-Catalyzed Hydrosilylation 501
47.1.6.3.1.6 Method 6: Reduction by Diimide 501
47.1.6.3.1.7 Method 7: Reduction by Sodium Dithionite 502
47.1.6.3.1.8 Method 8: Reduction by Zirconocene and Hydrochloric Acid 503
47.1.6.3.1.9 Method 9: Reduction by Vanadium(II) and Pyrocatechol 503
47.1.6.3.1.10 Method 10: Reduction by Samarium and Water 503
47.1.6.3.1.11 Method 11: Electrochemical Reduction 504
47.1.6.3.1.12 Method 12: Reduction by Nicotinamide Adenine Dinucleotide Model Dihydropyridines 504
47.1.6.3.1.13 Method 13: Reduction by Yeasts 504
47.1.6.3.2 Synthesis by Hydrocarbonation (Addition of Carbon and Hydrogen) 505
47.1.6.3.2.1 Method 1: Hydrocarbonation Using Alkyllithium Reagents 505
47.1.6.3.2.2 Method 2: Hydrocarbonation Using Alkylsodium Reagents 506
47.1.6.3.2.3 Method 3: Hydrocarbonation Using Organometallic Reagents 507
47.1.6.3.2.4 Method 4: Hydrocarbonation Using Nitroalkane Anions 509
47.1.6.3.2.5 Method 5: Hydrocarbonation Using Stabilized Carbanions 510
47.1.6.3.2.6 Method 6: Hydrocarbonation by Reductive Coupling to Carbonyl Compounds, Imines, or Alkenes 512
47.1.6.3.3 Synthesis by Carbonation (Formation of Two C--C Bonds) 514
47.1.6.3.3.1 Method 1: Carbonation Using an Alkyl- or Aryllithium and a Haloalkane 514
47.1.6.3.3.2 Method 2: Carbonation Using a Grignard Reagent Followed by Carbon Dioxide 514
47.1.6.3.3.3 Method 3: Carbonation Using a Nickel-Catalyst with Trimethylborane or Dimethylzinc and an Aldehyde 515
47.1.6.3.3.4 Method 4: Carbonation Using an Alkylcopper Reagent Followed by a Carbonyl or Haloalkane Electrophile 515
47.1.6.3.3.5 Method 5: Carbonation Using an Acyl(carbonyl)cobalt Reagent and a Stabilized Carbanion 516
47.1.6.3.4 Addition Across Two Molecules of a 1,3-Diene 517
47.1.6.3.4.1 Method 1: Hydrocarbonation Using Nitroalkane Anions 517
47.1.6.3.4.2 Method 2: Hydrocarbonation Using Stabilized Carbanions 518
47.1.6.3.4.3 Method 3: Hydrocarbonation Using Reductive Coupling to Imines and Alkenes 518
47.1.6.3.4.4 Method 4: Carbonation Using Alkyl Radicals 518
47.1.6.3.4.5 Method 5: Addition of Ammonia and Amines 519
47.1.6.3.4.6 Method 6: Addition of Alcohols, Phenols, or Carboxylic Acids 519
47.1.6.3.4.7 Method 7: Addition of Arenesulfinic Acids 520
47.1.6.4 Synthesis from 1,4-Dienes, 1,5-Dienes, or Higher Dienes 520
47.1.6.4.1 Method 1: Catalytic Hydrogenation 520
47.1.6.4.1.1 Variation 1: Hydrogenation Using Nickel Catalysts 520
47.1.6.4.1.2 Variation 2: Hydrogenation Using Palladium Catalysts 521
47.1.6.4.1.3 Variation 3: Hydrogenation Using Platinum Catalysts 521
47.1.6.4.1.4 Variation 4: Hydrogenation Using Other Metal Catalysts 522
47.1.6.4.2 Method 2: Reduction by Magnesium 523
47.1.6.4.3 Method 3: Reduction by Diimide 523
47.1.6.4.4 Method 4: Reduction by Sodium Hydrazide/Hydrazine 524
47.1.6.4.5 Method 5: Reduction by Nicotinamide Adenine Dinucleotide Model Dihydropyridines 524
47.1.7 Synthesis by Isomerization 530
47.1.7.1 Method 1: Rearrangement from Terminal to Internal Alkenes 530
47.1.7.1.1 Variation 1: Using Ruthenium Complexes 530
47.1.7.1.2 Variation 2: Using Rhodium Catalysts 532
47.1.7.1.3 Variation 3: Using Palladium Complexes 533
47.1.7.1.4 Variation 4: Using Diphenyl Disulfone 534
47.1.7.2 Method 2: Rearrangement from Internal to Terminal Alkenes 535
47.1.7.3 Method 3: Rearrangement of Z- and E-Alkenes 537
47.1.7.3.1 Variation 1: Conversion of an E-Alkene into a Z-Alkene 538
47.1.7.3.2 Variation 2: Conversion of a Z-Alkene into an E-Alkene 539
47.1.7.4 Method 4: Allylic Rearrangement 540
47.1.7.4.1 Variation 1: Of Alcohols and Ethers 540
47.1.7.4.2 Variation 2: Of Esters and Imidates 545
47.1.7.4.3 Variation 3: Of Sulfoxides, Selenoxides, Sulfones, and Related Compounds 547
47.1.7.4.4 Variation 4: Of Azides 549
47.1.7.5 Method 5: Rearrangement of Vinylcyclopropanes 550
47.1.7.5.1 Variation 1: Under Thermal Conditions 551
47.1.7.5.2 Variation 2: Under Photochemical Conditions 551
47.1.7.5.3 Variation 3: Under Transition-Metal Catalysis 553
47.1.8 Synthesis from Other Alkenes without Isomerization 558
47.1.8.1 Method 1: Electrophilic Substitution 558
47.1.8.1.1 Variation 1: Acylation Reactions 558
47.1.8.1.2 Variation 2: Reactions of Vinylsilanes and Vinylstannanes 559
47.1.8.2 Method 2: Nucleophilic Substitution 562
47.1.8.2.1 Variation 1: Reactions with Carbon Nucleophiles 562
47.1.8.2.2 Variation 2: Reactions with Heteroatom Nucleophiles 563
47.1.8.3 Method 3: Alkylation of Organometallic Compounds 565
47.1.8.3.1 Variation 1: Reactions of Organolithium Compounds 566
47.1.8.3.2 Variation 2: Reactions of Organomagnesium Compounds 568
47.1.8.3.3 Variation 3: Reactions of Organocopper Compounds 570
47.2 Product Class 2: Cyclopropenes 574
47.2.1 Synthesis of Product Class 2 574
47.2.1.1 Method 1: Synthesis by Ring Closure with Formation of Two C--C Bonds 574
47.2.1.2 Method 2: Synthesis by Ring Closure with Formation of One C--C Bond 576
47.2.1.2.1 Variation 1: Dehydrohalogenation of Allylic Halides 576
47.2.1.2.2 Variation 2: Cyclizing Insertions of Methylenecarbenes (Vinylidenes) or Related Species 577
47.2.1.2.3 Variation 3: 1,3-Elimination from Propenes 577
47.2.1.2.4 Variation 4: By Formation of the C==C Bond 578
47.2.1.3 Method 3: Synthesis by Ring Contraction 578
47.2.1.4 Method 4: Synthesis by 1,2-Elimination 579
47.2.1.4.1 Variation 1: Dehydrohalogenation 579
47.2.1.4.2 Variation 2: Dehalogenation 583
47.2.1.4.3 Variation 3: Dehalosilylation 586
47.2.1.4.4 Variation 4: Dehydroxysilylation 587
47.2.1.5 Method 5: Synthesis by Rearrangement of Methylenecyclopropanes 588
47.2.1.6 Method 6: Synthesis from Other Cyclopropenes 589
47.2.1.6.1 Variation 1: By Alkylation of a Carbon Nucleophile 589
47.2.1.6.2 Variation 2: By Alkylation with an Electrophilic Reagent 590
47.2.1.6.3 Variation 3: By Ene Reactions 590
47.2.1.7 Method 7: Miscellaneous Methods 593
47.3 Product Class 3: Nonconjugated Di-, Tri-, and Oligoenes 598
47.3.1 Synthesis of Product Class 3 598
47.3.1.1 Synthesis with C--C Bond Formation 598
47.3.1.1.1 Method 1: Wittig-Type Reactions 598
47.3.1.1.2 Method 2: Coupling Reactions with Organometallic Compounds 601
47.3.1.1.2.1 Variation 1: With Organomagnesium Compounds 601
47.3.1.1.2.2 Variation 2: With Organoboron Compounds 603
47.3.1.1.2.3 Variation 3: With Organoaluminum and Organoindium Compounds 604
47.3.1.1.2.4 Variation 4: With Organosilicon and Organotin Compounds 605
47.3.1.1.2.5 Variation 5: With Other Organometallic Compounds 609
47.3.1.1.3 Method 3: Dimerization and Oligomerization Reactions 613
47.3.1.2 Synthesis by Elimination 613
47.3.1.2.1 Method 1: Synthesis from Cyclopropylcarbinols 613
47.3.1.2.2 Method 2: Synthesis from Iodohydrin Derivatives 614
47.3.1.2.3 Method 3: Hydroboration--Elimination of Enamines 615
47.3.1.3 Synthesis by Reduction 615
47.3.1.3.1 Method 1: Catalytic Hydrogenation 615
47.3.1.3.2 Method 2: Chemical Reduction 616
47.3.1.3.3 Method 3: Electrochemical Reduction 617
Keyword Index 620
Author Index 658
Abbreviations 688
Erscheint lt. Verlag | 14.5.2014 |
---|---|
Reihe/Serie | Science of Synthesis |
Verlagsort | Stuttgart |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Chemie ► Organische Chemie |
Technik | |
Schlagworte | Alkenes • Chemie • Chemische Synthese • chemistry of organic compound • chemistry organic reaction • chemistry reference work • C HEMISTRY REFERENCE WORK • chemistry synthetic methods • compound functional group • compound organic synthesis • compounds with all-carbon functions • cycloalkenes • ethene • ETH ENE • hydrocarbon alkenes • isomeric butenes • Mechanism • methods in organic synthesis • methods peptide synthesis • Organic Chemistry • organic chemistry functional groups • organic chemistry reactions • organic chemistry review • organic chemistry synthesis • ORGANIC CHEM ISTRY SYNTHESIS • organic method • organic reaction • organic reaction mechanism • ORGANI C REACTION MECHANISM • Organic Syntheses • organic synthesis • organic synthesis reference work • Organisch-chemische Synthese • Organische Chemie • Peptide synthesis • Practical • practical organic chemistry • propene • Reactions • reference work • Review • review organic synthesis • review synthetic methods • REVIEW SYNTHE TIC METHODS • Synthese • Synthetic chemistry • Synthetic Methods • Synthetic Organic Chemistry • synthetic transformation |
ISBN-10 | 3-13-172281-9 / 3131722819 |
ISBN-13 | 978-3-13-172281-2 / 9783131722812 |
Haben Sie eine Frage zum Produkt? |
Größe: 10,0 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
Größe: 28,3 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich