Science of Synthesis: Houben-Weyl Methods of Molecular Transformations Vol. 43 (eBook)
744 Seiten
Thieme (Verlag)
978-3-13-172221-8 (ISBN)
Science of Synthesis – Volume 43: Polyynes, Arynes, Enynes, and Alkynes 1
Title page 3
Imprint 5
Preface 6
Volume Editor's Preface 8
Overview 10
Table of Contents 12
Introduction 30
43.1 Product Class 1: Linear Conjugated Diynes, Oligoynes, and Polyynes 66
43.1.1 Product Subclass 1: Alka-1,3-diynes 67
43.1.1.1 Synthesis of Product Subclass 1 67
43.1.1.1.1 Method 1: Copper-Promoted Oxidative Homocoupling of Terminal Alkynes 67
43.1.1.1.1.1 Variation 1: Glaser Coupling 68
43.1.1.1.1.2 Variation 2: Eglinton Coupling 71
43.1.1.1.1.3 Variation 3: Hay Coupling 73
43.1.1.1.1.4 Variation 4: Copper-Promoted Oxidative Homocoupling of Silylacetylenes 77
43.1.1.1.1.5 Variation 5: Copper-Mediated Solid-State Coupling 78
43.1.1.1.1.6 Variation 6: Silver(I) 4-Toluenesulfonate/Copper(II) Chloride/N,N,N',N'-Tetramethylethylenediamine Catalytic System and Solid-Phase On-Bead Coupling 78
43.1.1.1.2 Method 2: Heterocoupling of Terminal Alkynes with 1-Haloalkynes 80
43.1.1.1.2.1 Variation 1: The Cadiot--Chodkiewicz Coupling 80
43.1.1.1.2.2 Variation 2: Polymer-Supported Cadiot--Chodkiewicz Coupling 83
43.1.1.1.2.3 Variation 3: Other Copper(I)-Catalyzed Heterocoupling Reactions 84
43.1.1.1.2.4 Variation 4: Cross Coupling of Alkynyl(phenyl)iodonium 4-Toluenesulfonates 85
43.1.1.1.2.5 Variation 5: Copper(I)-Promoted Heterocoupling between Silylalkynes and Chloroalkynes 86
43.1.1.1.3 Method 3: Homocoupling of Alkynyl Grignard Compounds 86
43.1.1.1.4 Method 4: Heterocoupling of Alkynyl Grignard Derivatives with 1-Haloalkynes 87
43.1.1.1.5 Method 5: Homocoupling of Alkynyllithium Compounds 88
43.1.1.1.6 Method 6: Coupling of Alkynylstannanes 89
43.1.1.1.6.1 Variation 1: Homocoupling of Alkynylstannanes 89
43.1.1.1.6.2 Variation 2: Cross Coupling of Alkynylstannanes 89
43.1.1.1.7 Method 7: Homocoupling and Cross Coupling of Alkynylboron Derivatives 90
43.1.1.1.8 Method 8: Dimerization of 1-Selanylalkynes 91
43.1.1.1.9 Method 9: Demercuration of Bis(alkynyl)mercury Compounds 92
43.1.1.1.10 Method 10: Coupling of Alkynylnickel Complexes 92
43.1.1.1.11 Method 11: Buta-1,3-diynes from Alkynylzirconocenes 93
43.1.1.1.12 Method 12: Palladium-Catalyzed Coupling of Terminal Alkynes 93
43.1.1.1.12.1 Variation 1: Homocoupling of Terminal Alkynes 94
43.1.1.1.12.2 Variation 2: Heterocoupling of Terminal Alkynes 96
43.1.1.1.13 Method 13: Palladium-Catalyzed Coupling of Alkynylstannanes 99
43.1.1.1.14 Method 14: Other Transition-Metal-Mediated Alkyne Coupling Processes 99
43.1.1.1.15 Method 15: Elimination of a Hydrogen Halide from 1,4-Dihalobut-2-ynes 100
43.1.1.1.16 Method 16: Elimination of a Hydrogen Halide from Haloalkenynes 101
43.1.1.1.16.1 Variation 1: Elimination of a Hydrogen Halide from 1-Haloalk-1-en-3-ynes 101
43.1.1.1.16.2 Variation 2: Elimination of a Hydrogen Halide from 2-Haloalk-1-en-3-ynes 104
43.1.1.1.16.3 Variation 3: Elimination of a Hydrogen Halide from 1-Haloalk-3-en-1-ynes 105
43.1.1.1.17 Method 17: Buta-1,3-diyne Formation from Carbenes and Carbenoids (Fritsch--Buttenberg--Wiechell Rearrangement) 106
43.1.1.1.18 Method 18: Synthesis of Buta-1,3-diynes via Phosphorus Ylides 108
43.1.1.1.18.1 Variation 1: Wittig Synthesis Using Phosphacumulene Ylides 108
43.1.1.1.18.2 Variation 2: Flash-Vacuum Pyrolysis of 2-Oxoalk-3-ynylidenetriphenylphosphoranes 109
43.1.1.1.19 Method 19: Base-Catalyzed Triple-Bond Isomerizations (Zipper Reaction) 111
43.1.2 Product Subclass 2: Linear Conjugated Oligoynes and Polyynes 112
43.1.2.1 Synthesis of Product Subclass 2 112
43.1.2.1.1 Method 1: Convergent Synthesis of Polyynes by Acetylene Coupling Reactions 112
43.1.2.1.1.1 Variation 1: Glaser Coupling 112
43.1.2.1.1.2 Variation 2: Eglinton Coupling 113
43.1.2.1.1.3 Variation 3: Hay Coupling 115
43.1.2.1.2 Method 2: Cadiot--Chodkiewicz Cross Coupling 120
43.1.2.1.3 Method 3: Tetraynes from Oxidative Homocoupling of Alkadiynyl Grignard Derivatives 123
43.1.2.1.4 Method 4: Homocoupling of Transition-Metal-Bound Buta-1,3-diynes 124
43.1.2.1.5 Method 5: Iterative Synthesis of Polyynes Using Acetylene Coupling Reactions 124
43.1.2.1.6 Method 6: Dehydrohalogenation of Halogenated Polyynic Precursors 127
43.1.2.1.6.1 Variation 1: Elimination of Hydrogen Chloride from 1,6-Dichlorohexa-2,4-diynes 127
43.1.2.1.6.2 Variation 2: Convergent Synthesis of Polyynes by the Alkynylation/Elimination of 1,1-Dibromoalk-1-en-3-ynes 128
43.1.2.1.7 Method 7: Polyyne Formation from Carbenes and Carbenoids (Fritsch--Buttenberg--Wiechell Rearrangement) 129
43.1.2.1.8 Method 8: Synthesis of Higher Polyynes by Pyrolysis 133
43.1.2.1.8.1 Variation 1: Flash-Vacuum Pyrolysis of Ethyl 3-Oxo-7-(4-tolyl)-2-(triphenylphosphoranylidene)hepta-4,6-diynoate 133
43.1.2.1.8.2 Variation 2: Linear Polyynes from Solution-Spray Flash-Vacuum Pyrolysis of Cyclobutene-1,2-diones 134
43.1.3 Product Subclass 3: Polydisperse Polyyne Fractions with Varying Numbers of Triple Bonds 134
43.1.3.1 Synthesis of Product Subclass 3 134
43.1.3.1.1 Method 1: Laser Ablation of Carbon Particles in Suspension 134
43.1.3.1.2 Method 2: Synthesis by Electric Arc Discharge 135
43.1.3.1.3 Method 3: Synthesis of Polydisperse Polyyne Solutions from the Hydrolysis of Carbides 136
43.1.3.1.4 Method 4: Polydisperse a,.-Dicyanopolyyne Fractions from Electric Arcing 137
43.2 Product Class 2: Cyclic Conjugated Diynes, Triynes, Tetraynes, and Polyynes 148
43.2.1 Product Subclass 1: Cyclic Conjugated Diynes 148
43.2.1.1 Synthesis of Product Subclass 1 148
43.2.1.1.1 Oxidative Homocoupling 148
43.2.1.1.1.1 Method 1: Glaser--Eglinton Conditions with Terminal Alkynes 149
43.2.1.1.1.1.1 Variation 1: Synthesis via Oligomerization under Standard Conditions 149
43.2.1.1.1.1.2 Variation 2: Synthesis via Oligomerization with Addition of Copper(I) Chloride 151
43.2.1.1.1.1.3 Variation 3: Synthesis via Oligomerization under Oxygen-Free Conditions 152
43.2.1.1.1.1.4 Variation 4: Synthesis via Oligomerization in Acetonitrile 152
43.2.1.1.1.1.5 Variation 5: Stepwise Synthesis under Standard Conditions 153
43.2.1.1.1.1.6 Variation 6: Stepwise Synthesis with Addition of Copper(I) Chloride 154
43.2.1.1.1.1.7 Variation 7: Stepwise Synthesis under Oxygen-Free Conditions 155
43.2.1.1.1.2 Method 2: Hay Conditions with Terminal Alkynes 156
43.2.1.1.1.2.1 Variation 1: Synthesis via Oligomerization 156
43.2.1.1.1.2.2 Variation 2: Stepwise Synthesis 158
43.2.1.1.2 Oxidative Heterocoupling of Terminal Alkynes and Bromoalkynes 159
43.2.1.1.2.1 Method 1: Cadiot--Chodkiewicz Conditions 159
43.2.1.1.2.1.1 Variation 1: With Pyridine as Solvent 159
43.2.1.1.2.1.2 Variation 2: Under Palladium Catalysis 161
43.2.1.1.3 Nucleophilic Substitution 162
43.2.1.1.3.1 Method 1: Reaction of Sodium Acetylides with Alkyl Bromides 162
43.2.1.1.3.1.1 Variation 1: Synthesis of Symmetrical Diynes 162
43.2.1.1.3.1.2 Variation 2: Synthesis of Unsymmetrical Diynes 163
43.2.1.1.4 Cumulene Dimerization 164
43.2.1.1.4.1 Method 1: Dimerization under Copper Catalysis 164
43.2.1.1.4.2 Method 2: Dimerization without Copper Catalysis 164
43.2.1.1.4.3 Method 3: 1,6-Elimination from 1,6-Dibromohexa-2,4-diyne Followed by Dimerization 165
43.2.1.1.5 Iodolactonization 165
43.2.1.2 Applications of Product Subclass 1 in Organic Synthesis 166
43.2.1.2.1 Method 1: Reaction with Sulfur 166
43.2.1.2.2 Method 2: Reaction with Tetrachlorothiophene 1,1-Dioxide 166
43.2.1.2.3 Method 3: Palladium-Catalyzed Enyne--Diyne Cross-Benzannulation 167
43.2.1.2.4 Method 4: Hydrogenation 167
43.2.1.2.5 Method 5: Reduction with a Trialkylborane 168
43.2.1.2.6 Method 6: Annulene Formation 168
43.2.1.2.7 Method 7: Radialene Formation 168
43.2.1.2.8 Method 8: Transannular Cyclization 169
43.2.1.2.8.1 Variation 1: With Potassium Hydroxide 169
43.2.1.2.8.2 Variation 2: With Potassium Hydroxide and Heat 169
43.2.1.2.8.3 Variation 3: With Sodium Bis(2-methoxyethoxy)aluminum Hydride 170
43.2.2 Product Subclass 2: Cyclic Conjugated Triynes 170
43.2.2.1 Synthesis of Product Subclass 2 170
43.2.2.1.1 Nucleophilic Substitution 170
43.2.2.1.1.1 Method 1: Reaction of Sodium Acetylides with Alkyl Bromides 171
43.2.3 Product Subclass 3: Cyclic Conjugated Tetraynes 171
43.2.3.1 Synthesis of Product Subclass 3 171
43.2.3.1.1 Oxidative Homocoupling 171
43.2.3.1.1.1 Method 1: Glaser--Eglinton Conditions 171
43.2.3.1.2 Carbenoid Rearrangement 172
43.2.3.1.2.1 Method 1: Fritsch--Buttenberg--Wiechell Conditions 172
43.2.4 Product Subclass 4: Cyclic Conjugated Polyynes 173
43.2.4.1 Synthesis of Product Subclass 4 173
43.2.4.1.1 Method 1: Decarbonylation 173
43.2.4.1.2 Method 2: Retro-Diels--Alder Reactions 174
43.2.4.1.3 Method 3: Retro-[2 + 2] Reactions 174
43.2.4.1.4 Method 4: [2 + 1]-Cheletropic Fragmentation 175
43.2.4.2 Applications of Product Subclass 4 in Organic Synthesis 175
43.2.4.2.1 Method 1: Reaction with Furan 175
43.2.4.2.2 Method 2: Fullerene Formation 176
43.3 Product Class 3: Arynes 180
43.3.1 Product Subclass 1: 1,2-Didehydroarenes and 1,2-Didehydrohetarenes 185
43.3.1.1 Synthesis of Product Subclass 1 185
43.3.1.1.1 Method 1: Elimination of Hydrogen 185
43.3.1.1.2 Method 2: Elimination of a Hydrogen and a Halogen Function 185
43.3.1.1.3 Method 3: Elimination of a Hydrogen and a Nitrogen Function 191
43.3.1.1.4 Method 4: Elimination of a Hydrogen and an Oxygen Function 191
43.3.1.1.5 Method 5: Elimination of a Hydrogen and a Sulfur or Selenium Function 192
43.3.1.1.6 Method 6: Elimination of a Silicon and a Halogen Function 192
43.3.1.1.7 Method 7: Elimination of a Silicon and an Oxygen Function 195
43.3.1.1.8 Method 8: Elimination of Two Carbon Functions 197
43.3.1.1.8.1 Variation 1: From Benzocyclobutene-1,2-diones 197
43.3.1.1.8.2 Variation 2: From Phthalic Anhydrides 199
43.3.1.1.8.3 Variation 3: From Phthaloyl Peroxide 202
43.3.1.1.8.4 Variation 4: From 1H-2,3-Benzoxazin-1-ones 202
43.3.1.1.9 Method 9: Elimination of a Carbon and a Halogen Function 203
43.3.1.1.10 Method 10: Elimination of a Carbon and an Oxygen Function 204
43.3.1.1.11 Method 11: Elimination of a Carbon and a Nitrogen Function 204
43.3.1.1.11.1 Variation 1: From ortho-Diazonioarenecarboxylates 204
43.3.1.1.11.2 Variation 2: From ortho-(3,3-Dimethyltriaz-1-enyl)arenecarboxylic Acids 206
43.3.1.1.12 Method 12: Elimination of Two Halogen Functions 207
43.3.1.1.12.1 Variation 1: From ortho-Haloarylmagnesium Halides 207
43.3.1.1.12.2 Variation 2: From ortho-Haloaryllithium Species 208
43.3.1.1.13 Method 13: Elimination of a Halogen and an Oxygen Function 210
43.3.1.1.13.1 Variation 1: From ortho-(Arylsulfonyloxy)arylmagnesium Chlorides 210
43.3.1.1.13.2 Variation 2: From ortho-Sulfonylaryllithium Compounds 212
43.3.1.1.14 Method 14: Elimination of a Halogen and a Sulfur Function 213
43.3.1.1.15 Method 15: Elimination of a Nitrogen and a Sulfur Function 213
43.3.1.1.16 Method 16: Elimination of Two Nitrogen Functions 214
43.3.1.2 Applications of Product Subclass 1 in Organic Synthesis 216
43.3.1.2.1 Method 1: Diels--Alder Reactions 217
43.3.1.2.2 Method 2: 1,3-Dipolar Cycloaddition Reactions 220
43.3.1.2.3 Method 3: [2 + 2]-Cycloaddition Reactions 223
43.3.1.2.4 Method 4: Ene Reactions 225
43.3.1.2.5 Method 5: Reactions with Nucleophiles 226
43.3.1.2.6 Method 6: Reactions Catalyzed by Palladium 232
43.3.2 Product Subclass 2: 1,3-Didehydroarenes and 1,3-Didehydrohetarenes 235
43.3.2.1 Synthesis of Product Subclass 2 236
43.3.2.1.1 Method 1: Elimination of Two Carbon Functions 236
43.3.2.1.1.1 Variation 1: From Diacetyl Isophthaloyl Peroxide 236
43.3.2.1.1.2 Variation 2: From Cyclophanediones 237
43.3.2.1.2 Method 2: Elimination of Two Halogen Functions 237
43.3.2.1.3 Method 3: Elimination of Two Nitrogen Functions 238
43.3.2.1.4 Method 4: Routes Applicable to Specific meta-Arynes 238
43.3.2.1.4.1 Variation 1: Synthesis of 2-Chloro-1,3-didehydronaphthalene by Elimination of Hydrogen and Halogen Functions 238
43.3.2.1.4.2 Variation 2: Synthesis of 2,4-Didehydrophenol by Elimination of a Carbon and a Nitrogen Function 239
43.3.2.1.4.3 Variation 3: Synthesis of 2-Phenyl-1,3-didehydrobenzene by Rearrangement 239
43.3.2.1.4.4 Variation 4: Synthesis of 1,8-Didehydronaphthalene by Elimination of Two Nitrogen Functions 240
43.3.2.1.4.5 Variation 5: Synthesis of 1,2,3-Tridehydrobenzene by Elimination of One Halogen and Two Carbon Functions 240
43.3.2.1.4.6 Variation 6: Synthesis of Trifluoro-1,3,5-tridehydrobenzene by Elimination of Three Halogen Functions 241
43.3.3 Product Subclass 3: 1,4-Didehydroarenes and 1,4-Didehydrohetarenes 241
43.3.3.1 Synthesis of Product Subclass 3 242
43.3.3.1.1 Method 1: Elimination of Two Carbon Functions 242
43.3.3.1.1.1 Variation 1: From Diacyl Terephthaloyl Peroxides 242
43.3.3.1.1.2 Variation 2: From Propellanes 242
43.3.3.1.2 Method 2: Elimination of Two Halogen Functions 243
43.3.3.1.3 Method 3: Rearrangement Reactions 244
43.4 Product Class 4: Linear Enynes 254
43.4.1 Synthesis of Product Class 4 254
43.4.1.1 Method 1: Palladium-Catalyzed Cross-Coupling Reactions 254
43.4.1.1.1 Variation 1: Using Terminal Alkynes 254
43.4.1.1.2 Variation 2: Using Organoboron Compounds 257
43.4.1.1.3 Variation 3: Using Organomagnesium Compounds 259
43.4.1.1.4 Variation 4: Using Organotin Compounds 261
43.4.1.1.5 Variation 5: Using Organozinc Compounds 263
43.4.1.2 Method 2: Copper-Mediated Reactions 264
43.4.1.2.1 Variation 1: Copper(I) Catalysis with Terminal Alkynes 265
43.4.1.2.2 Variation 2: Starting from Vinylboranes 266
43.4.1.2.3 Variation 3: Starting from Other Vinyl Organometallic Compounds 268
43.4.1.2.4 Variation 4: Starting from Alkynylcopper Species 269
43.4.1.3 Method 3: Carbene Reactions 270
43.4.1.4 Method 4: Elimination Reactions To Form the Alkene 273
43.4.1.4.1 Variation 1: From Propargylic Systems 273
43.4.1.4.2 Variation 2: From Cyclic Carbonates 276
43.4.1.4.3 Variation 3: Coupling--Elimination Reactions 277
43.4.1.4.4 Variation 4: By Carbonyl Alkenation 278
43.4.1.4.5 Variation 5: From Silicon or Sulfur Compounds 281
43.4.1.5 Method 5: Elimination Reactions To Form the Alkyne 283
43.4.1.5.1 Variation 1: From 1,1-Dibromobutadienes 283
43.4.1.5.2 Variation 2: From Vinyl Sulfones 284
43.4.1.6 Method 6: Addition Reactions to Diynes 286
43.4.1.6.1 Variation 1: Addition of Complex Aluminum and Boron Hydrides 286
43.4.1.6.2 Variation 2: Hydrosilylation, Hydrostannylation, and Stannylcupration of Diynes 287
43.4.1.6.3 Variation 3: Hydroaminations, Hydrophosphinylations, and the Addition of Alcohols, Thiols, and Higher Group 16 Analogues 289
43.4.1.6.4 Variation 4: Addition of Carbon Fragments 292
43.4.1.7 Method 7: Synthesis from Heterocyclic Compounds 295
43.4.1.8 Method 8: Synthesis by Rearrangement 297
43.4.1.9 Method 9: Alkyne Dimerizations 302
43.4.1.9.1 Variation 1: Base-Induced Dimerizations 302
43.4.1.9.2 Variation 2: Transition-Metal-Catalyzed Alkyne Dimerizations 303
43.4.1.9.3 Variation 3: Rare Earth and Main Group Metal Catalyzed Dimerizations 308
43.5 Product Class 5: Cyclic Enynes 318
43.5.1 Product Subclass 1: Cyclooctenynes 319
43.5.1.1 Synthesis of Product Subclass 1 319
43.5.1.1.1 Method 1: Alkyne Formation Post Ring Closure 319
43.5.1.1.1.1 Variation 1: Base-Mediated Cycloelimination Reaction 319
43.5.2 Product Subclass 2: Cyclononenynes 320
43.5.2.1 Synthesis of Product Subclass 2 322
43.5.2.1.1 Method 1: Ring Closure by Alkynylmetal Condensations with Carbonyl Groups and Related Electrophiles 322
43.5.2.1.2 Method 2: Ring Closure by Condensation of Alkyne--Hexacarbonyldicobalt Complexes (Nicholas Reaction) 323
43.5.2.1.3 Method 3: Ring-Contraction Reactions 324
43.5.2.1.3.1 Variation 1: Wittig Rearrangement 324
43.5.2.1.3.2 Variation 2: Photochemical Sulfur Dioxide Extrusion 324
43.5.2.1.4 Method 4: Alkene Formation Post Ring Closure 325
43.5.2.1.4.1 Variation 1: Elimination Reactions with Base 325
43.5.2.1.4.2 Variation 2: Decomplexation Reactions 325
43.5.2.1.5 Method 5: Alkyne Formation Post Ring Closure 326
43.5.3 Product Subclass 3: Cyclodecenynes 326
43.5.3.1 Synthesis of Product Subclass 3 327
43.5.3.1.1 Method 1: Base-Mediated Ring Closure by Alkynylmetal Condensations with Carbonyl Groups and Related Electrophiles 327
43.5.3.1.1.1 Variation 1: Aldol Condensation Reaction 330
43.5.3.1.1.2 Variation 2: Carbene Insertion--Elimination Reaction 331
43.5.3.1.1.3 Variation 3: Chromium(II) Chloride/Nickel(II) Chloride Condensation Reactions 331
43.5.3.1.1.4 Variation 4: Alkynyltrimethylsilane Condensations with Fluoride Ion 334
43.5.3.1.1.5 Variation 5: Condensations from Enol Ethers with a Lewis Acid 335
43.5.3.1.2 Method 2: Ring Closure by Condensation of Alkyne--Hexacarbonyldicobalt Complexes (Nicholas Reaction) 335
43.5.3.1.2.1 Variation 1: With In Situ Enolization 337
43.5.3.1.3 Method 3: Pinacol Ring-Closure Reactions 338
43.5.3.1.3.1 Variation 1: Pinacol Ring Closure--Alkene Formation 339
43.5.3.1.4 Method 4: Palladium Coupling Reactions 340
43.5.3.1.4.1 Variation 1: Double Palladium Coupling Reactions 341
43.5.3.1.5 Method 5: Ring-Contraction Reactions 342
43.5.3.1.5.1 Variation 1: Sulfur Dioxide Extrusion 342
43.5.3.1.6 Method 6: Intramolecular Diels--Alder Reactions 343
43.5.3.1.7 Method 7: Alkene Formation Post Ring Closure 344
43.5.3.1.7.1 Variation 1: Thermolysis Reactions 344
43.5.3.1.7.2 Variation 2: Enzyme-Mediated Reactions 345
43.5.3.1.7.3 Variation 3: Allylic Rearrangement Reactions 345
43.5.3.1.7.4 Variation 4: Dehydrogenation Reactions 346
43.5.3.1.7.5 Variation 5: Retro-Diels--Alder Reactions 346
43.5.3.1.8 Method 8: Alkyne Formation Post Ring Closure 347
43.5.3.1.9 Method 9: Ruthenium Coupling Reactions 347
43.5.4 Product Subclass 4: Cycloundecenynes 348
43.5.4.1 Synthesis of Product Subclass 4 348
43.5.4.1.1 Method 1: Ring Closure by Alkynylmetal Condensations with Carbonyl Groups and Related Electrophiles 348
43.5.4.1.1.1 Variation 1: Chromium(II) Chloride/Nickel(II) Chloride Condensations 349
43.5.4.1.2 Method 2: Ring Closure by Condensation of Alkyne--Hexacarbonyldicobalt Complexes (Nicholas Reaction) 349
43.5.4.1.3 Method 3: Palladium Coupling Reactions 350
43.5.4.1.4 Method 4: Ring-Contraction Reactions 350
43.5.4.1.4.1 Variation 1: Sulfur Dioxide Extrusion 350
43.5.4.1.4.2 Variation 2: Sigmatropic Rearrangements 351
43.5.4.1.5 Method 5: Intramolecular Diels--Alder Reactions 352
43.5.4.1.6 Method 6: Alkene Formation Post Ring Closure 352
43.5.4.1.6.1 Variation 1: Thermolysis Reactions 352
43.5.5 Product Subclass 5: Cyclododecenynes 353
43.5.5.1 Synthesis of Product Subclass 5 353
43.5.5.1.1 Method 1: Ring Closure by Chromium(II) Chloride/Nickel(II) Chloride Condensations 353
43.5.5.1.2 Method 2: Copper Coupling Reactions 354
43.5.5.1.3 Method 3: Ruthenium Coupling Reactions 355
43.5.5.1.4 Method 4: Ring-Contraction Reactions 355
43.5.5.1.4.1 Variation 1: Sulfur Dioxide Extrusion 355
43.5.5.1.5 Method 5: Alkene Formation Post Ring Closure 356
43.5.5.1.5.1 Variation 1: Thermolysis Reactions 356
43.5.5.1.6 Method 6: Alkyne Formation Post Ring Closure 356
43.5.6 Product Subclass 6: Cyclotridecenynes 357
43.5.6.1 Synthesis of Product Subclass 6 357
43.5.6.1.1 Method 1: Ring-Contraction Reactions 357
43.5.6.1.1.1 Variation 1: Sulfur Dioxide Extrusion 357
43.5.6.1.1.2 Variation 2: Sigmatropic Rearrangement Reaction 357
43.5.7 Product Subclass 7: Cyclotetradecenynes 358
43.5.7.1 Synthesis of Product Subclass 7 358
43.5.7.1.1 Method 1: Ring-Contraction Reactions 358
43.5.7.1.1.1 Variation 1: Sulfur Dioxide Extrusion 358
43.5.7.1.2 Method 2: Copper Coupling Reactions 358
43.5.7.1.3 Method 3: Ruthenium Coupling Reactions 359
43.5.8 Product Subclass 8: Cyclopentadecenynes 359
43.5.8.1 Synthesis of Product Subclass 8 359
43.5.8.1.1 Method 1: Ring-Contraction Reactions 359
43.5.8.1.1.1 Variation 1: Sulfur Dioxide Extrusion 359
43.5.8.1.2 Method 2: Alkyne Formation Post Ring Closure 360
43.5.9 Product Subclass 9: Cyclohexadecenynes 360
43.5.9.1 Synthesis of Product Subclass 9 360
43.5.9.1.1 Method 1: Ruthenium Coupling Reactions 360
43.5.9.1.2 Method 2: Ring-Contraction Reactions 361
43.5.10 Product Subclass 10: Cyclophanes and Annulenes with Enyne Bridge Components 361
43.5.10.1 Synthesis of Product Subclass 10 361
43.5.10.1.1 Method 1: Copper Coupling Reactions 361
43.5.10.1.2 Method 2: Palladium Coupling Reactions 367
43.6 Product Class 6: Acyclic Arylalkynes 374
43.6.1 Synthesis of Product Class 6 376
43.6.1.1 Synthesis from Metalated Arenes and Haloalkynes 376
43.6.1.1.1 Method 1: Cross Coupling of Aryl Cuprates and Haloalkynes 376
43.6.1.1.2 Method 2: Cross Coupling of Aryl Stannanes and Haloalkynes 377
43.6.1.2 Synthesis from Haloarenes and Metal Alkynides 378
43.6.1.2.1 Method 1: Palladium-Catalyzed Cross Coupling with Tin Alkynides 378
43.6.1.2.2 Method 2: Palladium-Catalyzed Cross Coupling with Zinc Alkynides 379
43.6.1.2.3 Method 3: Palladium-Catalyzed Cross Coupling with Copper Alkynides (The Stephens--Castro Reaction) 380
43.6.1.2.4 Method 4: Palladium-Catalyzed Cross Coupling with Silicon Alkynides 381
43.6.1.2.5 Method 5: Palladium-Catalyzed Cross Coupling with Aluminum Alkynides 382
43.6.1.2.6 Method 6: Palladium-Catalyzed Cross Coupling with Magnesium Alkynides (Kumada--Corriu-Type Coupling) 384
43.6.1.2.7 Method 7: Palladium-Catalyzed Cross Coupling with Boron Alkynides 384
43.6.1.3 Synthesis from Haloarenes and Terminal Alkynes 386
43.6.1.3.1 Method 1: Silver/Palladium-Catalyzed Cross Coupling of Haloarenes and Terminal Alkynes 386
43.6.1.3.2 Method 2: Indium/Palladium-Catalyzed Cross Coupling of Haloarenes and Terminal Alkynes 387
43.6.1.3.3 Method 3: Zinc/Palladium-Catalyzed Cross Coupling of Haloarenes and Terminal Alkynes 388
43.6.1.3.4 Method 4: Copper/Palladium-Catalyzed Cross Coupling of Haloarenes and Terminal Alkynes (The Sonogashira--Hagihara Cross-Coupling Reaction) 388
43.6.1.3.4.1 Variation 1: Sonogashira Cross-Coupling Reactions for Bromoarenes Using Specially Designed Ligands 390
43.6.1.3.4.2 Variation 2: Sonogashira Reaction under Microwave-Irradiation Conditions 391
43.6.1.3.4.3 Variation 3: Sonogashira Reaction under Phase-Transfer Conditions 392
43.6.1.3.4.4 Variation 4: Sonogashira Reactions in Water or Aqueous Mixtures of Solvents 393
43.6.1.3.5 Method 5: Palladium-Catalyzed Cross Coupling (Copper-Free Sonogashira Reaction) 394
43.6.1.3.5.1 Variation 1: Domino Halogen-Exchange (Halex) and Copper-Free Sonogashira Reaction 397
43.6.1.3.5.2 Variation 2: Palladium-Catalyzed Cross Coupling in Water 398
43.6.1.3.5.3 Variation 3: Palladium-Catalyzed Cross Coupling in Ionic Liquids 399
43.6.1.3.5.4 Variation 4: Palladium-Catalyzed Coupling Using Palladium(0) Nanoparticles 400
43.6.1.3.5.5 Variation 5: Solvent-Free Palladium-Catalyzed Cross Coupling 401
43.6.1.3.5.6 Variation 6: Palladium-Catalyzed Cross Coupling Using Microwave Irradiation 402
43.6.1.3.6 Method 6: Metal-Free Cross Coupling (Metal-Free Sonogashira Reaction) 403
43.6.1.4 Synthesis by Elimination 404
43.6.1.4.1 Method 1: Elimination of Arylalkanes 404
43.6.1.4.1.1 Variation 1: Halogenation Followed by Double Dehydrohalogenation 404
43.6.1.4.1.2 Variation 2: Benzylation Followed by Double Dehydrohalogenation 405
43.6.1.4.2 Method 2: Elimination from Vinylarenes 405
43.6.1.4.2.1 Variation 1: 1,1-Dehydrohalogenation and 1,1-Dehalogenation 405
43.6.1.4.3 Method 3: Elimination of Carbon Monoxide from Cyclopropenones 406
43.6.1.4.4 Method 4: Elimination of Dinitrogen from Five-Membered Heterocycles 408
43.6.1.4.5 Method 5: Synthesis from Aromatic Aldehydes 409
43.6.1.4.5.1 Variation 1: Alkenylation and Subsequent Elimination 409
43.6.1.4.5.2 Variation 2: Corey--Fuchs Modification 410
43.6.1.4.5.3 Variation 3: Seyferth--Gilbert Modification 411
43.6.1.4.5.4 Variation 4: Bestmann--Ohira Modification 412
43.6.1.5 Synthesis by Metathesis Reactions 414
43.6.1.5.1 Method 1: Alkyne Homodimerization 414
43.6.1.5.2 Method 2: Alkyne Cross Metathesis 415
43.6.1.5.3 Method 3: Ring-Closure Alkyne Metathesis 415
43.6.1.5.4 Method 4: Acyclic Diyne Metathesis 416
43.7 Product Class 7: Cyclic Arylalkynes 422
43.7.1 Synthesis of Product Class 7 422
43.7.1.1 Formation of Triple-Bond-Containing Rings by C--C Bond Formation 422
43.7.1.1.1 Method 1: Formation of C(sp3)--C(sp3) Bonds by Wurtz-Type Coupling Reactions 422
43.7.1.1.2 Method 2: Formation of C(sp3)--C(sp) Bonds by Nucleophilic Substitution Reactions of Metal Acetylides with Haloalkanes 423
43.7.1.1.3 Method 3: Formation of C(sp2)--C(sp2) Bonds by Copper(II)-Catalyzed Coupling Reactions of Aryllithiums 424
43.7.1.1.4 Method 4: Formation of C(sp2)--C(sp) Bonds by Transition-Metal-Catalyzed Cross-Coupling Reactions 425
43.7.1.1.4.1 Variation 1: Stephens--Castro Reactions of Copper(I) Acetylides with Aryl and Vinyl Halides 425
43.7.1.1.4.2 Variation 2: Copper(I)-Catalyzed Coupling of Acetylenes with Aryl Halides 427
43.7.1.1.4.3 Variation 3: Hagihara--Sonogashira Reactions of Acetylenes with Aryl and Vinyl Halides 428
43.7.1.1.4.4 Variation 4: Palladium(0)-Catalyzed Cross-Coupling Reactions of Acetylenes with Vinyl Trifluoromethanesulfonates 430
43.7.1.1.4.5 Variation 5: In Situ Deprotection--Palladium(0)-Catalyzed Cross-Coupling Reactions 431
43.7.1.1.5 Method 5: Formation of C(sp)--C(sp) Bonds by Transition-Metal-Mediated Oxidative Coupling Reactions 434
43.7.1.1.5.1 Variation 1: Hay Coupling Reactions 435
43.7.1.1.5.2 Variation 2: Eglinton Coupling Reactions 437
43.7.1.1.5.3 Variation 3: Breslow's Modification of Eglinton Coupling Reactions 441
43.7.1.1.5.4 Variation 4: Preparation of Macrocyclic Arylacetylenes Using Covalently Bound Templates 444
43.7.1.1.5.5 Variation 5: In Situ Deprotection--Eglinton Type Coupling Reactions 445
43.7.1.1.5.6 Variation 6: Palladium(II)-Catalyzed Oxidative Coupling Reactions of Terminal Alkynes 446
43.7.1.1.5.7 Variation 7: Palladium(0)-Catalyzed Cross Coupling of Terminal Alkynes with Bromoalkynes 448
43.7.1.1.6 Method 6: Alkyne Metathesis 449
43.7.1.1.7 Method 7: Cycloaddition Reaction of Cumulenic Quinodimethanes 452
43.7.1.2 Formation of Triple-Bond-Containing Rings by Elimination Reactions 452
43.7.1.2.1 Method 1: Double Dehydrohalogenation Reactions 453
43.7.1.2.2 Method 2: Double Elimination Reactions of ß-Substituted Sulfones 455
43.7.1.2.3 Method 3: Oxidative Fragmentation of Bishydrazones 456
43.7.1.3 Formation of Aromatic Rings 457
43.7.1.3.1 Method 1: Metal-Catalyzed Cyclotrimerizations 457
43.7.1.3.2 Method 2: Palladium(0)-Catalyzed Enyne--Diyne [4 + 2] Cross-Benzannulation 458
43.7.1.3.3 Method 3: Valence Isomerization 459
43.8 Product Class 8: Linear Alkynes 464
43.8.1 Synthesis by Elimination 464
43.8.1.1 1,2-Elimination 464
43.8.1.1.1 Method 1: Dehydrogenation of Alkanes and Alkenes 464
43.8.1.1.2 Method 2: Dehydrohalogenation of Vicinal Dihaloalkanes 466
43.8.1.1.3 Method 3: Elimination Reactions of Heteroatom-Substituted Vinyl Derivatives 467
43.8.1.1.4 Method 4: Elimination of Vicinal Heteroatom Groups 470
43.8.1.2 1,1-Elimination 471
43.8.1.2.1 Method 1: Dehalogenation of 1,1-Dihaloalkenes (Corey--Fuchs Reaction) 471
43.8.1.2.1.1 Variation 1: Normal Corey--Fuchs Reactions 471
43.8.1.2.1.2 Variation 2: Modified Corey--Fuchs Reactions 473
43.8.1.2.2 Method 2: Rearrangement of Vinyl Carbenoids (Fritsch--Buttenburg--Wiechell Rearrangement) 474
43.8.1.3 Thermolytic Elimination 476
43.8.1.3.1 Method 1: Elimination Reactions of Vinyl Selenoxides 476
43.8.1.3.2 Method 2: Elimination Reactions of Thiirene Dioxides (Ramberg--Bäcklund Reaction), Phosphirene Oxides, and a-Oxo Ylides 477
43.8.1.3.3 Method 3: Elimination Reactions of Cyclic 1,2,3-Selenadiazoles 479
43.8.1.4 Photolytic Elimination 480
43.8.1.4.1 Method 1: Cycloreversion of Fused Benzocyclobutene Derivatives 480
43.8.1.4.2 Method 2: Elimination of Carbon Monoxide from Cyclopropenone and Cyclobutenedione Derivatives 481
43.8.1.5 Double Elimination Reactions of 1,2-Disubstituted Motifs from Aldol-Type Condensations 483
43.8.1.5.1 Method 1: Wittig Reactions of (Halomethylene)phosphoranes and (Halomethyl)phosphonates 483
43.8.1.5.1.1 Variation 1: Wittig Reactions of (a-Halomethylene)phosphoranes 483
43.8.1.5.1.2 Variation 2: Wittig Reactions of (Halomethyl)phosphonates 484
43.8.1.5.2 Method 2: Synthesis Using a-Diazo ß-Oxo Phosphonates (Bestmann--Ohira Reagent) 485
43.8.1.5.2.1 Variation 1: One-Pot Oxidation of Benzyl Alcohols and Subsequent Treatment with the Bestmann--Ohira Reagent 487
43.8.1.5.2.2 Variation 2: Reaction Using a Gel-Supported Bestmann--Ohira Reagent 488
43.8.1.5.3 Method 3: Aldol Condensation of a-Sulfonyl Anions with Aldehydes, Followed by Double Elimination 490
43.8.1.5.3.1 Variation 1: Double Elimination of Acetoxy and Siloxy Derivatives 490
43.8.1.5.3.2 Variation 2: Double Elimination Involving Peterson Elimination 490
43.8.1.5.3.3 Variation 3: Double Elimination Using a Chlorophosphonate as a Trapping Agent 491
43.8.1.6 Oxidative Elimination 492
43.8.1.6.1 Method 1: Oxidative Elimination of 1,2-Bis(hydrazones) 492
43.8.1.6.2 Method 2: Oxidative Elimination of Vinylstannanes 494
43.8.2 Synthesis by Rearrangement 498
43.8.2.1 Thermal Rearrangements 498
43.8.2.1.1 Method 1: Thermal Isomerization of Cyclopropenes 498
43.8.2.1.2 Method 2: Cope and Claisen Rearrangements and Related Reactions 500
43.8.2.1.3 Method 3: Ene Reaction and Related Conversions 505
43.8.2.1.4 Method 4: Rearrangement of Alkylidenecarbenes 507
43.8.2.1.5 Method 5: Fritsch--Buttenberg--Wiechell Rearrangement and Related Carbenoid Reactions 512
43.8.2.1.5.1 Variation 1: Fritsch--Buttenberg--Wiechell Rearrangement of 1-Haloalkenes and 1,1-Dihaloalkenes 512
43.8.2.1.5.2 Variation 2: Photo-Fritsch--Buttenberg--Wiechell Rearrangement 515
43.8.2.1.5.3 Variation 3: Electrochemical-Fritsch--Buttenberg--Wiechell Rearrangement 516
43.8.2.1.5.4 Variation 4: Carbenoid Rearrangement of Other Metalated Species 517
43.8.2.1.5.5 Variation 5: Carbenoid Rearrangements of a-Halo-ß,ß-Diarylacrylic Acids and a-Halocinnamic Acids 518
43.8.2.1.5.6 Variation 6: Carbenoid Rearrangement of 3-Nitrosooxazolidin-2-ones and Related Compounds 520
43.8.2.1.5.7 Variation 7: Carbenoid Rearrangement of 5-Methyltetrazoles 521
43.8.2.1.5.8 Variation 8: Carbenoid Rearrangement of Ketene Adducts with Phosphites 522
43.8.2.1.6 Method 6: Miscellaneous Thermal Rearrangements 522
43.8.2.1.6.1 Variation 1: Alkynes by a Hydrogen-Shift Reaction 522
43.8.2.1.6.2 Variation 2: Alkynes by Retro-Diels--Alder Reaction 523
43.8.2.1.6.3 Variation 3: Alkynes by [2,3]-Sigmatropic Rearrangement 524
43.8.2.2 Photochemical Rearrangements 524
43.8.2.2.1 Method 1: Photochemical Rearrangement of Allenes 524
43.8.2.2.2 Method 2: Photochemical Vinylidenecarbene Rearrangements 526
43.8.2.2.3 Method 3: Photochemical Rearrangement of Cyclopropenes 527
43.8.2.2.4 Method 4: Formal Cycloreversion of Cyclobutenes 528
43.8.2.3 Base-Catalyzed Rearrangements 529
43.8.2.3.1 Method 1: Alk-2-ynes by Base-Catalyzed Rearrangement of Alk-1-ynes 529
43.8.2.3.2 Method 2: Alk-1-ynes by Base-Catalyzed Rearrangement of Internal Alkynes 532
43.8.2.3.3 Method 3: Base-Catalyzed Rearrangement of Internal Alkynes 535
43.8.2.3.4 Method 4: Base-Catalyzed Rearrangement of Allenes 536
43.8.2.4 Acid-Catalyzed Rearrangements 538
43.8.2.4.1 Method 1: Acid-Catalyzed Rearrangement of Alkynes and Allenes 539
43.8.2.4.2 Method 2: Dienol--Benzene and Dienone--Benzene Rearrangements 540
43.8.2.4.3 Method 3: Anomeric Oxygen-to-Carbon Rearrangement of Alkynyltributylstannanes 543
43.8.2.5 Metal-Catalyzed Rearrangements 545
43.8.2.5.1 Method 1: Alkyne Metathesis 545
43.8.2.5.2 Method 2: Gold-Catalyzed Rearrangements 553
43.8.2.5.3 Method 3: Tandem Zinc-Promoted Brook Rearrangement and Ene--Allene Cyclization 554
43.8.2.5.4 Method 4: Metal-Catalyzed Rearrangements with Other Metals 556
43.8.2.6 Coarctate Rearrangements 561
43.8.2.6.1 Method 1: Diazirine Rearrangement 562
43.8.2.6.2 Method 2: Spiroozonide Conversion 562
43.8.2.6.3 Method 3: Rearrangement of Cyclopropylcarbenes 563
43.8.2.6.4 Method 4: The Eschenmoser--Tanabe Fragmentation of Epoxy Ketones 566
43.8.2.6.5 Method 5: Fragmentation of 1,3,4-Oxadiazolidin-2-ones 572
43.8.2.6.6 Method 6: Cyclopropenylcarbene Fragmentation 573
43.8.2.6.7 Method 7: Furfurylidene Rearrangement 575
43.8.2.7 Enzyme-Catalyzed Rearrangements 576
43.8.3 Synthesis from Other Alkynes 584
43.8.3.1 Conversion into an Alkynylmetal Followed by Reaction with an Electrophile 584
43.8.3.1.1 Method 1: Reaction of an Alkynyllithium with an Alkyl Halide or Equivalent 584
43.8.3.1.1.1 Variation 1: With a Chloroalkane 584
43.8.3.1.1.2 Variation 2: With a Bromoalkane 587
43.8.3.1.1.3 Variation 3: With an Iodoalkane 598
43.8.3.1.1.4 Variation 4: With a Dialkyl Sulfate 606
43.8.3.1.1.5 Variation 5: With an Alkyl Methanesulfonate 607
43.8.3.1.1.6 Variation 6: With an Alkyl Arenesulfonate 608
43.8.3.1.1.7 Variation 7: With an Alkyl Trifluoromethanesulfonate 610
43.8.3.1.1.8 Variation 8: With an Allyl Ester or Carbonate 611
43.8.3.1.1.9 Variation 9: With an Alcohol 612
43.8.3.1.1.10 Variation 10: With a Trialkylborane 612
43.8.3.1.1.11 Variation 11: With an Alkylzirconium Reagent 614
43.8.3.1.2 Method 2: Reaction of an Alkynylsodium with an Alkyl Halide or Equivalent 615
43.8.3.1.2.1 Variation 1: With a Chloroalkane 615
43.8.3.1.2.2 Variation 2: With a Bromoalkane 615
43.8.3.1.2.3 Variation 3: With an Iodoalkane 618
43.8.3.1.2.4 Variation 4: With a Dialkyl Sulfate 619
43.8.3.1.2.5 Variation 5: With an Alkyl Arenesulfonate 620
43.8.3.1.3 Method 3: Reaction of an Alkynylpotassium with an Alkyl Halide or Equivalent 620
43.8.3.1.4 Method 4: Reaction of an Alkynyl Grignard Reagent with an Alkyl Halide or Equivalent 620
43.8.3.1.4.1 Variation 1: With a Chloroalkane 620
43.8.3.1.4.2 Variation 2: With a Bromoalkane 622
43.8.3.1.4.3 Variation 3: With an Iodoalkane 623
43.8.3.1.4.4 Variation 4: With a Dialkyl Sulfate 624
43.8.3.1.4.5 Variation 5: With an Alkyl Methanesulfonate 625
43.8.3.1.4.6 Variation 6: With an Alkyl Arenesulfonate 626
43.8.3.1.4.7 Variation 7: With an Allyl Ester 626
43.8.3.1.4.8 Variation 8: With an Alkylzirconium Reagent 627
43.8.3.1.5 Method 5: Reaction of an Alkynylcalcium with an Alkyl Halide or Equivalent 628
43.8.3.1.6 Method 6: Reaction of an Alkynylbarium with an Alkyl Halide or Equivalent 628
43.8.3.1.7 Method 7: Palladium/Copper-Catalyzed Reaction of an Alk-1-yne with an Alkyl Halide or Equivalent 628
43.8.3.1.7.1 Variation 1: With a Chloroalkane 628
43.8.3.1.7.2 Variation 2: With a Bromoalkane 630
43.8.3.1.7.3 Variation 3: With an Iodoalkane 634
43.8.3.1.7.4 Variation 4: With an Alkyl Methanesulfonate 634
43.8.3.1.7.5 Variation 5: With an Alkyl Arenesulfonate 635
43.8.3.1.7.6 Variation 6: With a Trialkylborane 635
43.8.3.1.8 Method 8: Reaction of an Alkynylcopper with an Alkyl Halide or Equivalent 635
43.8.3.1.8.1 Variation 1: With a Bromoalkane 635
43.8.3.1.9 Method 9: Reaction of an Alkynylmercury with an Alkyl Halide or Equivalent 636
43.8.3.1.9.1 Variation 1: With a Bromoalkane 636
43.8.3.1.9.2 Variation 2: With an Iodoalkane 636
43.8.3.1.10 Method 10: Reaction of an Alkynylboron Reagent with an Alkyl Halide or Equivalent 636
43.8.3.1.11 Method 11: Reaction of an Alkynylaluminum Reagent with an Alkyl Halide or Equivalent 637
43.8.3.1.11.1 Variation 1: With a Chloroalkane 637
43.8.3.1.11.2 Variation 2: With a Bromoalkane 638
43.8.3.1.11.3 Variation 3: With an Alkyl Methanesulfonate 638
43.8.3.1.11.4 Variation 4: With an Alkyl Phenyl Sulfone 638
43.8.3.1.11.5 Variation 5: With a Propiolactone 639
43.8.3.1.12 Method 12: Reaction of a (Trialkylsilyl)alkyne with an Alkyl Halide or Equivalent 640
43.8.3.1.12.1 Variation 1: With a Chloroalkane 640
43.8.3.1.13 Method 13: Reaction of an Alkynyllithium with an Allene or Other Alkene 640
43.8.3.1.13.1 Variation 1: With a Bromoallene 640
43.8.3.2 Nucleophilic Substitution by an Organometallic Reagent at an Alkyne Derivative 641
43.8.3.2.1 Method 1: Reaction of a Chloroalkyne with an Organometallic Reagent 641
43.8.3.2.1.1 Variation 1: With a Silyl Enol Ether 641
43.8.3.2.1.2 Variation 2: With an Organozirconium Reagent 641
43.8.3.2.2 Method 2: Reaction of a Bromoalkyne with an Organometallic Reagent 642
43.8.3.2.2.1 Variation 1: With a Grignard Reagent 642
43.8.3.2.2.2 Variation 2: With an Organozinc Reagent 642
43.8.3.2.2.3 Variation 3: With a Trialkylaluminum Reagent 645
43.8.3.2.2.4 Variation 4: With an Organozirconium Reagent 646
43.8.3.2.3 Method 3: Reaction of an Iodoalkyne with an Organometallic Reagent 646
43.8.3.2.3.1 Variation 1: With a Grignard Reagent 646
43.8.3.2.3.2 Variation 2: With an Organozinc Reagent 647
43.8.3.2.3.3 Variation 3: With an Organocopper Reagent 647
43.8.3.2.3.4 Variation 4: With an Organozirconium Reagent 648
43.8.3.2.4 Method 4: Reaction of an Alkynyl Aryl Sulfone with an Alkyllithium 649
43.8.3.3 Reactions Involving neither Electrophilic nor Nucleophilic Attack 649
43.8.3.3.1 Method 1: Reaction of an Alkynyl Trifluoromethyl Sulfone with an Alkane 649
43.8.3.3.2 Method 2: Reaction of an Alkynyl Phenyl Sulfone with a B-Alkylcatecholborane 650
43.8.3.3.3 Method 3: Ruthenium-Catalyzed Reaction of an Alkyne with a 1,3-Diene 651
43.8.3.3.4 Method 4: Nickel-Catalyzed Reaction of an Alkyne with an Allyl Ester 651
43.8.3.3.5 Method 5: Palladium-Catalyzed Oxidative Coupling of an Alkynylstannane Reagent with an Alkylzinc Reagent 652
43.9 Product Class 9: Cycloalkynes 660
43.9.1 Synthesis of Product Class 9 660
43.9.1.1 Method 1: Ring-Closure Reactions 660
43.9.1.1.1 Variation 1: Using sp-Carbon Nucleophiles 660
43.9.1.1.2 Variation 2: Using sp3-Carbon Nucleophiles 663
43.9.1.1.3 Variation 3: Using Chalcogen Nucleophiles 667
43.9.1.1.4 Variation 4: Using Nitrogen Nucleophiles 668
43.9.1.1.5 Variation 5: Alkyne Metathesis 673
43.9.1.2 Method 2: Elimination and Fragmentation Reactions 677
43.9.1.2.1 Variation 1: 1,2-Elimination Reactions 677
43.9.1.2.2 Variation 2: Cycloelimination Reactions 682
43.9.1.2.3 Variation 3: Eschenmoser Fragmentation 685
43.9.1.3 Method 3: Isomerization Reactions 686
43.9.1.3.1 Variation 1: Pericyclic Ring-Opening Reactions 686
43.9.1.4 Method 4: Ring-Enlargement Reactions 687
43.9.1.4.1 Variation 1: Fritsch--Buttenberg--Wiechell Rearrangement 687
43.9.1.4.2 Variation 2: Carbene Reactions 687
43.9.1.5 Method 5: Decomplexation Reactions 689
43.9.1.5.1 Variation 1: Cleavage of Hexacarbonyldicobalt Complexes 689
43.9.2 Applications of Product Class 9 in Organic Synthesis 690
43.9.2.1 Method 1: Reactions of Cyclic Alkynes with Organometallic Reagents 690
43.9.2.1.1 Variation 1: Reactions of Cyclic Alkynes with (.5-Cyclopentadienyl)cobalt(I) 690
43.9.2.1.2 Variation 2: Reactions of Cyclic Alkynes with Aluminum Trichloride 692
Keyword Index 698
Author Index 736
Abbreviations 768
Erscheint lt. Verlag | 14.5.2014 |
---|---|
Reihe/Serie | Science of Synthesis |
Verlagsort | Stuttgart |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Chemie ► Organische Chemie |
Technik | |
Schlagworte | Alkynes • Arynes • AR YNES • Chemie • Chemische Synthese • chemistry of organic compound • chemistry organic reaction • chemistry reference work • C HEMISTRY REFERENCE WORK • chemistry synthetic methods • compound functional group • compound organic synthesis • compounds with all-carbon functions • Enynes • Mechanism • methods in organic synthesis • methods peptide synthesis • Organic Chemistry • organic chemistry functional groups • organic chemistry reactions • organic chemistry review • organic chemistry synthesis • ORGANIC CHEM ISTRY SYNTHESIS • organic method • organic reaction • organic reaction mechanism • ORGANI C REACTION MECHANISM • Organic Syntheses • organic synthesis • organic synthesis reference work • Organisch-chemische Synthese • Organische Chemie • Peptide synthesis • Polyynes • Practical • practical organic chemistry • Reactions • reference work • Review • review organic synthesis • review synthetic methods • REVIEW SYNTHE TIC METHODS • supramolecular chemistry • Synthese • Synthetic chemistry • Synthetic Methods • Synthetic Organic Chemistry • synthetic transformation |
ISBN-10 | 3-13-172221-5 / 3131722215 |
ISBN-13 | 978-3-13-172221-8 / 9783131722218 |
Haben Sie eine Frage zum Produkt? |
Größe: 13,7 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
Größe: 25,2 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich