Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Fatigue in Composites -

Fatigue in Composites (eBook)

Science and Technology of the Fatigue Response of Fibre-Reinforced Plastics

Bryan Harris (Herausgeber)

eBook Download: PDF | EPUB
2003 | 1. Auflage
768 Seiten
Elsevier Science (Verlag)
978-1-85573-857-7 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
270,00 inkl. MwSt
(CHF 259,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This major handbook is the first authoritative survey of current knowledge of fatigue behaviour of composites. It deals in detail with a wide range of problems met by designers in the automotive, marine and structural engineering industries. Compiled from the contributions of some of the best-known researchers in the field, it provides an invaluable, practical and encyclopaedic handbook covering recent developments. - Comprehensively discusses the problems of fatigue in composites met by designers in the aerospace, marine and structural engineering industries - Provides a general introduction on fatigue in composites before reviewing current research on micromechanical aspects - Analyses various types of composites with respect to fatigue behaviour and testing and provides in-depth coverage of life-prediction models for constant variable stresses
This major handbook is the first authoritative survey of current knowledge of fatigue behaviour of composites. It deals in detail with a wide range of problems met by designers in the automotive, marine and structural engineering industries. Compiled from the contributions of some of the best-known researchers in the field, it provides an invaluable, practical and encyclopaedic handbook covering recent developments. - Comprehensively discusses the problems of fatigue in composites met by designers in the aerospace, marine and structural engineering industries- Provides a general introduction on fatigue in composites before reviewing current research on micromechanical aspects- Analyses various types of composites with respect to fatigue behaviour and testing and provides in-depth coverage of life-prediction models for constant variable stresses

Front Cover 1
Fatigue in Composites: Science and Technology of the Fatigue Response of Fibre-Reinforced Plastics 4
Copyright Page 
5 
Table of Contents 6
Preface 14
Acknowledgements 17
Contributor contact details 18
Part I: Introduction to fatigue in composites 24
Chapter 1. A historical review of the fatigue behaviour of fibre-reinforced plastics 26
1.1 Introduction 26
1.2 Fatigue phenomena in fibre composites 27
1.3 Concluding comments 53
1.4 Bibliography 54
1.5 References 54
Chapter 2. Fatigue test methods, problems and standards 59
2.1 Introduction 59
2.2 Fatigue data requirements 59
2.3 Fatigue testing requirements 61
2.4 Fatigue test equipment 62
2.5 Artefacts in fatigue testing 65
2.6 Standardized test methods 75
2.7 Precision data 79
2.8 Data presentation 81
2.9 Concluding comments 82
2.10 Future trends 84
2.11 Acknowledgements 84
2.12 References 85
Chapter 3. Fatigue under multiaxial stress systems 86
3.1 Introduction 86
3.2 Fatigue failure criteria 86
3.3 Material properties degradation 91
3.4 Progressive fatigue damage modelling 101
3.5 Material characterization 103
3.6 Experimental evaluation of the model 116
3.7 Conclusions 131
3.8 References 132
Part II: Micromechanical aspects of fatigue in composites 138
Chapter 4. The effects of aggressive environments on long-term behaviour 140
4.1 Introduction 140
4.2 Aqueous environments 140
4.3 Moisture sensitivity of resins 143
4.4 Thermal spiking 146
4.5 Thermomechanical response of matrix resins 146
4.6 Effect of moisture on composite performance 149
4.7 Fibre-dominated properties 152
4.8 Role of the matrix and interface 158
4.9 Environmental stress-corrosion cracking (ESCC) of GRP 160
4.10 Designing for stress-corrosion resistance 165
4.11 Non-aqueous environments 166
4.12 Conclusions 168
4.13 References 168
Chapter 5. The effect of the interface on the fatigue performance of fibre composites 170
5.1 Introduction 170
5.2 Effect of interface parameters on fatigue performance 170
5.3 Effect of other parameters that indirectly affect the interface on fatigue performance 178
5.4 Effect of fatigue loading on interface 186
5.5 Conclusions 191
5.6 References 193
Chapter 6. Delamination fatigue 196
6.1 Introduction 196
6.2 The interlaminar fracture mechanics approach for fatigue 198
6.3 Characterizing delamination in fatigue 200
6.4 Modelling a delamination 206
6.5 Using fracture mechanics analysis as a design tool 207
6.6 Structural integrity prediction 210
6.7 References 210
Chapter 7. The fatigue of hybrid composites 212
7.1 Introduction 212
7.2 Comparison of fatigue data 218
7.3 Materials and experimental procedures 221
7.4 Results and discussion 225
7.5 Fractography 256
7.6 Conclusions 259
7.7 Acknowledgements 260
7.8 References 261
Chapter 8. Non-destructive evaluation of damage accumulation 265
8.1 Introduction 265
8.2 Acoustic NDE techniques 266
8.3 Acoustic emission 277
8.4 Radiography 279
8.5 Thermographic NDE methods 282
8.6 Eddy currents 282
8.7 Moiré interferometry 282
8.8 Summary and concluding remarks 284
8.9 Acknowledgements 285
8.10 Information sources 285
8.11 References 285
Part III: Fatigue in different types of composites 290
Chapter 9. Short-fibre thermoset composites 292
9.1 Introduction 292
9.2 Structure and composition of short-fibre thermoset composites 293
9.3 Static behaviour 293
9.4 Fatigue behaviour 301
9.5 Conclusions 315
9.6 References 315
Chapter 10. Woven-fibre thermoset composites 319
10.1 Introduction 319
10.2 Fatigue performance of laminated composites 321
10.3 Woven-fabric laminated composites 322
10.4 Fatigue testing 326
10.5 Fatigue damage in woven-fabric composites 327
10.6 Fatigue loading: stiffness, strength and life 331
10.7 Recent studies of the fatigue behaviour of WF composites 333
10.8 Future trends 333
10.9 Nomenclature 334
10.10 References 334
Chapter 11. Fatigue of thermoplastic composites 337
11.1 Introduction 337
11.2 Thermoplastics 339
11.3 Continuous-fibre composites 344
11.4 Short-fibre composites 354
11.5 Future of thermoplastic composites 357
11.6 References 358
Chapter 12. Fatigue of wood and wood panel products 362
12.1 Introduction 362
12.2 The structure and properties of wood and timber 362
12.3 Fatigue life of wood and panel products 366
12.4 Dynamic property changes in fatigue of wood and panel products 372
12.5 Fatigue damage development in wood and panel products 379
12.6 Fatigue in timber joints 380
12.7 Fatigue of natural fibre composites 381
12.8 Conclusions 381
12.9 Acknowledgements 381
12.10 References 382
Part IV: Life-prediction methods for constant stress and variable stress 386
Chapter 13. Physical modelling of damage development in structural composite materials under stress 388
13.1 Introduction 388
13.2 A framework for understanding damage development 388
13.3 A question of design route 390
13.4 A question of physical modelling 392
13.5 A question of fatigue 395
13.6 Physical modelling of fatigue damage development 399
13.7 Physical modelling of fatigue damage development at stress concentrators 419
13.8 Computer implementation 431
13.9 Summary and final remarks 432
13.10 Acknowledgements 433
13.11 References 433
Chapter 14. Micromechanical models 436
14.1 Introduction 436
14.2 Damage accumulation in composite materials 437
14.3 Changes in stiffness 439
14.4 Changes in local material strength 440
14.5 Strength: an internal state variable and damage metric 442
14.6 Strength of a composite material: ‘Critical element’ concepts 442
14.7 Non-uniform stress states: characteristic material dimensions 444
14.8 Strength evolution 444
14.9 Applications 449
14.10 Conclusions 452
14.11 Acknowledgements 453
14.12 References 453
Chapter 15. A computational mesodamage model for life prediction for laminates 455
15.1 Introduction 455
15.2 The damage scenarios on the micro structural scale 455
15.3 The 3D damage model for laminates according to scenarios 3 and 4 456
15.4 The ‘micro’ modelling of laminate composite for scenarios 1 and 2 457
15.5 Mesomodel of the laminated composite 459
15.6 Comparison with experiments for [0n/90m]s 460
15.7 Perspectives 463
15.8 References 464
Chapter 16. A statistical study of the fatigue performance of fibre-reinforced composite laminates 465
16.1 Introduction 465
16.2 Fatigue and methodology 466
16.3 Statistical model 470
16.4 Stress redistribution function 472
16.5 Evaluation of fatigue performance of composite laminates 476
16.6 Concluding remarks 486
16.7 Acknowledgements 491
16.8 References 491
Chapter 17. Analysis of matrix crack-induced delamination in composite laminates under static and fatigue loading 493
17.1 Introduction 493
17.2 Stiffness properties of cracked laminates with delaminations 494
17.3 Delamination onset and growth prediction 509
17.4 Conclusions 519
17.5 Acknowledgements 521
17.6 References 522
17.7 Appendices 523
Chapter 18. Fatigue strength of composites under variable plane stress 527
18.1 Introduction 527
18.2 Life prediction under combined stress: theoretical considerations 528
18.3 Experimental and property evaluation 532
18.4 Verification of life prediction methodology 539
18.5 Structural application example: Inboard part of a rotor blade 543
18.6 Concluding remarks 544
18.7 References 546
Chapter 19. Life prediction under service loading spectra 549
19.1 Introduction 549
19.2 Stiffness degradation under block-type loading spectrum 551
19.3 Statistical distribution of fatigue life 554
19.4 Experimental program 555
19.5 Experimental verification 556
19.6 Conclusions 567
19.7 References 568
Chapter 20. A parametric constant-life model for prediction of the fatigue lives of fibre-reinforced plastics 569
20.1 Introduction 569
20.2 The nature of fatigue processes in composites 569
20.3 Cracks in composites 570
20.4 Life prediction: the alternatives 571
20.5 A parametric constant-life model for life prediction 573
20.6 Conclusions 588
20.7 Acknowledgements 590
20.8 References 590
Chapter 21. A neural-network approach to fatigue-life prediction 592
21.1 Introduction 592
21.2 Background 593
21.3 Biological neural networks 593
21.4 Multi-variate non-linear mappings 593
21.5 Artificial neural network models 596
21.6 The use of artificial neural networks in practice 600
21.7 Application of artificial neural networks to the analysis of fatigue life data 602
21.8 Optimum artificial neural network architecture 603
21.9 Selection of inputs for training the artificial neural network 603
21.10 Constant stress amplitude fatigue 603
21.11 New material application 604
21.12 Block-loading data analysis 605
21.13 Suggested procedure for applying neural networks to fatigue life data 606
21.14 Comparison with other methods 608
21.15 Future trends 611
21.16 Acknowledgements 611
21.17 References 611
Part V: Fatigue in practical situations 614
Chapter 22. The fatigue performance of composite structural components 616
22.1 Introduction 616
22.2 General approach 616
22.3 Damage growth and life prediction 618
22.4 An approach to full-scale testing 621
22.5 Reliability 622
22.6 Applications 622
22.7 Conclusions 639
22.8 References 639
22.9 Appendix 642
22.10 Nomenclature 643
Chapter 23. Fatigue of joints in composite structures 644
23.1 Introduction 644
23.2 Composite joints 644
23.3 Fatigue in adhesive joints 648
23.4 Fatigue in bolted joints 656
23.5 Outlook 662
23.6 Summary 663
23.7 References 664
Chapter 24. Fatigue in filament-wound structures 667
24.1 Introduction 667
24.2 Brief overview of literature on pipe behaviour 668
24.3 Breadboard fixtures 669
24.4 Fatigue behaviour of bi-directional [+55/–55] glass-fibre/epoxy-matrix filament-wound pipes 671
24.5 Conclusions 678
24.6 References 678
Chapter 25. Fatigue of FRP composites in civil engineering applications 681
25.1 Introduction 681
25.2 Composite material applications in civil engineering 681
25.3 Typical fatigue loadings in civil engineering structures 690
25.4 Fatigue behaviour of composite structures and components 694
25.5 Design and analysis of structures for fatigue 700
25.6 Case study: FRP road deck fatigue performance (TRL test programme on ACCS Roadway Panel) 702
25.7 Operational aspects 707
25.8 Concluding remarks 708
25.9 References 708
Chapter 26. Fatigue in aerospace applications 709
26.1 Introduction 709
26.2 Overview of fatigue performance of aerospace materials 711
26.3 Fatigue life prediction 715
26.4 Damage mechanisms 718
26.5 Airframe structural elements 721
26.6 Conclusions 729
26.8 Acknowledgements 730
26.9 References 730
Chapter 27. Fatigue and durability of marine composites 732
27.1 Introduction 732
27.2 Specific nature of the marine environment 734
27.3 Marine composites 738
27.4 Durability of marine laminates 740
27.5 Durability of sandwich materials 742
27.6 Assemblies 743
27.7 Slamming impact response 745
27.8 Cylinders for underwater applications 747
27.9 Future directions 750
27.10 References 750
Index 753

Contributor contact details


Chapter 1 & 20

Professor Bryan Harris, b.harris@bath.ac.uk     Materials Research Centre, Department of Engineering and Applied Science, University of Bath, Bath, Somerset, UK, Tel: + 44 (0) 1225 826447

Chapter 2

Dr Graham D. Sims, graham.sims@npl.co.uk     National Physical Laboratory Materials Centre, Teddington, Middlesex, TW11 0LW, UK, Tel: + 44 (0) 20 8943 6564, Fax: + 44 (0) 20 8614 0433

Chapter 3

Professor Mahmood M. Shokrieh, shokrieh@iust.ac.ir     Mechanical Engineering Department, Iran University of Science and Technology, Narmak, Tehran 16844, Iran, Tel.: + 98 911 288 7925 Fax: + 98 21 749 1206

Professor L.B. Lessard, larry.lessard@mcgill.ca     Department of Mechanical Engineering, McGill University, 817 Sherbrooke St West, Montreal, Quebec, Canada, H3A 2 K6, Tel: + 1 514 398-6305,0020Fax: + 1 514 398-6305

Chapter 4

Professor F.R. Jones, f.r.jones@sheffield.ac.uk     Department of Engineering Materials, University of Sheffield, Sir Robert Hadfield Building, Sheffield, S1 3JD, UK, Tel: + 44 (0) 114 222 5477

Chapter 5

Professor C. Galiotis12, f.r.jones@sheffield.ac.uk

Dr C. Koimtzoglou1, ckoim@iceht.forth.gr

1Institute of Chemical Engineering and High Temperature Processes, Foundation for Research & Technology – Hellas, Stadiou Street, Platani PO Box 1414, GR-265 04, Patras, Greece

2Materials Science Department, School of Natural Science, University of Patras GR-265 04, Patras, Greece, Tel: +30 610-965 255, Fax: +30 610-965 223

Chapter 6

Dr Rod Martin, rmartin@merl-ltd.co.uk     Materials Engineering Research Laboratory Ltd, Tamworth Road, Hertford, SG13 7DG, UK, Tel: + 44 (0) 1992 510803 Fax: + 44 (0) 1992 586439

Chapter 7

Dr G.F. Fernando, G.F.Fernando@rmcs.cranfield.ac.uk     Engineering Systems Department, Cranfield University, RMCS, Shrivenham, Swindon, SN6 8LA, UK, Tel: + 44 (0) 1793 785146

Dr F.A.A. Al-Khodairi     Polymer Research Technology, Saudi Basic Industries Corporation, PO Box 42503, Riyadh 11551, Saudi Arabia

Chapter 8

Professor A.P. Mouritz, adrian.mouritz@rmit.edu.au     School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, GPO Box 2476 V, Melbourne Victoria 3001, Australia, Tel: + 61 3 9925 8069, Fax: + 61 3 9925 8099

Chapter 9

Professor G. Caprino, caprino@unina.it     Department of Materials and Production Engineering, University of Naples “Federico II”, Piazzale Tecchio 80, 80125, Napoli, Italy

Chapter 10

Professor N.K. Naik, nknaik@aero.iitb.ac.in     Aerospace Engineering Department, Indian Institute of Technology – Bombay, Powai, Mumbai - 400 076, India, Tel: + 91 22 2576 7114 Fax: + 91 22 2572 2602

Chapter 11

Dr E.K. Gamstedt, kristofer@hallf.kth.se     Department of Solid Mechanics, Royal Institute of Technology (KTH), SE-10044 Stockholm, Sweden, Tel: + 46 8 790 7553 Fax: + 46 8 411 2418

Professor L.A. Berglund, blund@kth.se     Department of Aeronautical and Vehicle Engineering, Royal Institute of Technology (KTH), SE-10044 Stockholm, Sweden, Tel: + 46 8 790 8118 Fax: + 46 8 796 6080

Chapter 12

Dr Martin P. Ansell, m.p.ansell@bath.ac.uk     Department of Engineering and Applied Science, University of Bath, Bath, BA2 7AY, UK, Tel: + 44 (0) 1225 386432, Fax: + 44 (0) 1225 386098

Chapter 13

Dr P.W.R. Beaumont, pwrb@eng.cam.ac.uk     Cambridge University Engineering Department, Trumpington Street, Cambridge, UK, Tel: + 44 (0) 1223 332600, Fax: + 44 (0) 1223 332662

Chapter 14

Professor K. Reifsnider, mrl@vt.edu     Alexander Giacco Professor of Engineering Science and Mechanics and Professor S. Case, 120Patton Hall, Virginia Tech, Blacksburg, VA 24061-0219, USA

Chapter 15

Professor P. Ladevèze, ladeveze@lmt.ens-cachan.fr; Dr G. Lubineau     ENS Cachan, CNRS, Université Paris 6, 61 avenue du Président Wilson, 94235 Cachan Cedex, France, Tel: + 33 (0) 1 47 40 22 41, Fax: + 33 (0) 1 47 40 27 85

Chapter 16

Professor Lin Ye; Professor Yiu-Wing Mai, mai@aeromech.usyd.edu.au     Centre for Advanced Materials Technology (CAMT), University of Sydney, Sydney, NSW 2006, Australia, Tel: + 61 2 9351 2290/2341, Fax: + 61 2 9351 3760

Dr Xiaoxue Diao, xiaoxue.diao@ps.ge.com     PreciCad Inc., 350 Boulevard Charest Est, 1st floor, Quebec, G1K 3H4, Canada, Tel: 514 485 4292, Fax: 514 485 4234

Chapter 17

Professor C. Soutis, c.soutis@sheffield.ac.uk     Head of Aerospace Engineering, University of Sheffield, Faculty of Engineering, Mappin Street, Sheffield, S1 3JD, UK, Tel: + 44 (0) 114 2227811 Fax: + 44 (0) 114 2227890

Dr M. Kashtalyan, m.kashtalyan@abdn.ac.uk     School of Engineering and Physical Sciences, University of Aberdeen Fraser Noble Building, King’s College, Aberdeen, AB24 3UE, UK, Tel: + 44 (0) 1224 272519, Fax: + 44 (0) 1224 272519

Chapter 18

Professor T.P. Philippidis, philippidis@mech.upatras.gr; Dr A.P. Vassilopoulos, vassilopoulos@mech.upatras.gr     Section of Applied Mechanics, Department of Mechanical Engineering and Aeronautics, University of Patras, PO Box 1401, University Campus 265 04, Rion, Greece, Tel/Fax: + 30 261 0997235

Chapter 19

Dr K.E. Fu; Professor L.J. Lee, ljlee@mail.iaa.ncku.edu.tw     Institute of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan 70101, ROC

Chapter 21

Dr J.A. Lee; Professor D.P. Almond, d.p.almond@bath.ac.uk     Department of Engineering and Applied Science; University of Bath; Bath; BA2 7AY; UK

Chapter 22

Professor M.D. Gilchrist, michael.gilchrist@ucd.ie     Department of Mechanical Engineering, University College Dublin, Belfield, Dublin 4, Ireland, Tel: + 353 1 7161884 Fax: + 353 1 2830534

Chapter 23

Dr J. Schön, snj@foi.se     Swedish Defence Research Agency FOI, SE-172 90 Stockholm, Sweden, Tel: + 46 8 55503595 Fax: + 46 8 55503869

Dr R. Starikov, Romsta@foi.se     Swedish Defence Research Agency FOI, FFA, SE-172 90 Stockholm Sweden

Chapter 24

Professor D. Perreux, dominique.perreux@univ-fcomte.fr; Dr Frédéric Thiébaud     Laboratoire de Mécanique Appliquée RC, 24 rue de l’Epitaphe, 25000 Besangon, France, Tel: + 33 (0) 3 81 66 60 12 Fax: + 33 (0) 3 81 66 67 00

Chapter 25

Dr John M.C. Cadei, john.cadei@fabermaunsell.com     FaberMaunsell Ltd, 160 Croydon Road, Beckenham, Kent, BR3 4DE, UK, Tel: + 44 (0) 870 905 0906 Fax: + 44 (0) 20 8663 6723

Chapter...

Erscheint lt. Verlag 31.10.2003
Sprache englisch
Themenwelt Technik Maschinenbau
ISBN-10 1-85573-857-0 / 1855738570
ISBN-13 978-1-85573-857-7 / 9781855738577
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 29,8 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 20,9 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich