Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Science of Synthesis Knowledge Updates 2014 Vol. 1 (eBook)

eBook Download: PDF
2014 | 1. Auflage
520 Seiten
Thieme (Verlag)
978-3-13-198401-2 (ISBN)

Lese- und Medienproben

Science of Synthesis Knowledge Updates 2014 Vol. 1 -
Systemvoraussetzungen
2.999,99 inkl. MwSt
(CHF 2929,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Science of Synthesis is a reference work for preparative methods in synthetic chemistry. Its product-based classification system enables chemists to easily find solutions to their synthetic problems.

Key Features:

  • Critical selection of reliable synthetic methods, saving the researcher the time required to find procedures in the primary literature.

  • Expertise provided by leading chemists.

  • Detailed experimental procedures.

  • The information is highly organized in a logical format to allow easy access to the relevant information.

The Science of Synthesis Editorial Board, together with the volume editors and authors, is constantly reviewing the whole field of synthetic organic chemistry as presented in Science of Synthesis and evaluating significant developments in synthetic methodology. Four annual volumes updating content across all categories ensure that you always have access to state-of-the-art synthetic methodology.

 

Science of Synthesis: Knowledge Updates 2014/1 1
Title page 5
Imprint 7
Preface 8
Abstracts 10
Overview 14
Table of Contents 16
Volume 1: Compounds with Transition Metal--Carbon p-Bonds and Compounds of Groups 10 – 8 (Ni, Pd, Pt, Co, Rh, Ir, Fe, Ru, Os) 28
1.7 Product Class 7: Organometallic Complexes of Iron 28
1.7.1 Product Subclass 1: Iron–Arene Complexes 33
Synthesis of Product Subclass 1 33
1.7.1.1 Method 1: Direct Complexation of Arenes 33
1.7.1.2 Method 2: Iron-Catalyzed Cycloaromatization 35
1.7.1.3 Method 3: Modification of .6-Complexes 35
1.7.1.3.1 Variation 1: Replacement of Chloride in Chlorobenzene Complexes by Nucleophiles 36
1.7.1.3.2 Variation 2: Use of Palladium-Catalyzed Coupling in the Presence of Cationic Iron–Cyclopentadienyl Complexes 37
1.7.1.3.3 Variation 3: Use of Nucleophilic Complexes Obtained by Deprotonation of Arene–Cyclopentadienyliron Complexes 38
1.7.1.3.4 Variation 4: Ligand Modification by Ring-Closing Metathesis 38
1.7.1.3.5 Variation 5: Nucleophile Addition to a Carbonyl Ligand 39
1.7.1.3.6 Variation 6: Modification of Functional Groups in the Presence of Cationic Iron–Cyclopentadienyl Complexes 39
Applications of Product Subclass 1 in Organic Synthesis 39
1.7.1.4 Method 4: Metal Removal To Give Organic Products 39
1.7.2 Product Subclass 2: Iron–Dienyl Complexes 41
Synthesis of Product Subclass 2 41
1.7.2.1 Method 1: Direct Complexation 41
1.7.2.1.1 Variation 1: Reaction of Cyclopentadienyl Anions with Iron Salts 41
1.7.2.1.2 Variation 2: Transfer of Cyclopentadienyliron 43
1.7.2.1.3 Variation 3: From Neutral Cyclopentadiene Derivatives 44
1.7.2.2 Method 2: Modification of .5-Cyclopentadienyl Complexes 44
1.7.2.2.1 Variation 1: Friedel–Crafts Acylation of Ferrocene Complexes 44
1.7.2.2.2 Variation 2: Metalation of Ferrocene Complexes 45
1.7.2.2.3 Variation 3: Modification of Functional Groups on Ferrocene Complexes 46
1.7.2.2.4 Variation 4: Redox Chemistry at the Metal of Ferrocene Complexes 47
1.7.2.2.5 Variation 5: Protonation at Iron 47
1.7.2.2.6 Variation 6: Manipulation of Di-µ-carbonyldicarbonylbis(.5-cyclopentadienyl)diiron 47
1.7.2.3 Method 3: Preparation by Hydride Abstraction 48
1.7.2.3.1 Variation 1: Regioisomer Preparation without Rearrangement 49
1.7.2.3.2 Variation 2: Regioisomer Preparation with Rearrangement 51
1.7.2.4 Method 4: Preparation from .4-Triene Complexes with Electrophiles 51
1.7.2.5 Method 5: Preparation from Dienol Complexes with Acid 53
1.7.2.5.1 Variation 1: Without Rearrangement 53
1.7.2.5.2 Variation 2: With Rearrangement 54
1.7.2.6 Method 6: Preparation by Demethoxylation in Acid 55
1.7.2.7 Method 7: Preparation by Oxidation with Thallium(III) Salts 57
1.7.2.8 Method 8: Preparation from Dienone Complexes 57
1.7.2.9 Method 9: Preparation from .6-Complexes 59
1.7.2.9.1 Variation 1: Nucleophile Addition to .6-Complexes at the & #960
1.7.2.9.2 Variation 2: Dealkoxylation of .6-Complexes 60
1.7.2.10 Method 10: Nucleophile Addition to .5-Complexes 60
1.7.2.10.1 Variation 1: Addition at the p-System 60
1.7.2.10.2 Variation 2: Addition next to the p-System 60
1.7.2.10.3 Variation 3: Addition at a Carbonyl Group 61
1.7.2.11 Method 11: Access to Salts by a Sequence of Nucleophile Addition and Leaving-Group Removal 62
1.7.2.11.1 Variation 1: Without Rearrangement 62
1.7.2.11.2 Variation 2: With Rearrangement 64
1.7.2.12 Method 12: Preparation by Opening Cyclopropane Rings 65
1.7.2.13 Method 13: Preparation of Nonracemic Complexes 65
1.7.2.13.1 Variation 1: From Ferrocene Complexes by Asymmetric Induction 66
1.7.2.13.2 Variation 2: From Complexes Originating from Resolution or Asymmetric Induction 66
1.7.2.13.3 Variation 3: From Complexes Originating from Biological Sources 67
Applications of Product Subclass 2 in Organic Synthesis 68
1.7.2.14 Method 14: Metal Removal To Give Organic Products 68
1.7.2.14.1 Variation 1: From Ferrocene Complexes 68
1.7.2.14.2 Variation 2: From Cationic .5-Ligated Tricarbonyliron Complexes 69
1.7.2.14.3 Variation 3: From .5-Cyclopentadienyl–Iron Complexes Formed by Nucleophilic Addition to .6-Complexes 69
1.7.3 Product Subclass 3: Iron–Diene Complexes 69
Synthesis of Product Subclass 3 70
1.7.3.1 Method 1: Preparation by Complexation 70
1.7.3.1.1 Variation 1: From Dienes without Rearrangement 70
1.7.3.1.2 Variation 2: From Dienes with Rearrangement 72
1.7.3.1.3 Variation 3: From Arenes by In Situ Reduction 73
1.7.3.1.4 Variation 4: From Dienes and Alkynes by Reaction with .1-Complexes 73
1.7.3.1.5 Variation 5: From Chromium Fischer Carbene Complexes 74
1.7.3.1.6 Variation 6: From Cycloheptatrienes and Cyclohexadienones by Reduction 74
1.7.3.1.7 Variation 7: From Dihydrothiophene 1,1-Dioxides 75
1.7.3.1.8 Variation 8: From Allyl Alcohols 75
1.7.3.1.9 Variation 9: From Dihalides, Allyl Halides, and Phosphate Esters 75
1.7.3.1.10 Variation 10: From Pyrones 76
1.7.3.1.11 Variation 11: From Dimethylcyclopropenes 76
1.7.3.1.12 Variation 12: From Vinylcyclopropanes 77
1.7.3.1.13 Variation 13: From Allenes via Trimethylenemethane Lactones 77
1.7.3.2 Method 2: Preparation from .3,.1-Complexes 78
1.7.3.2.1 Variation 1: From Ferralactone Complexes 78
1.7.3.2.2 Variation 2: From .3,.1-Complexes 79
1.7.3.2.3 Variation 3: Nucleophile Addition to Cationic .3,.1-Carbene Complexes 79
1.7.3.3 Method 3: Cyclodimerization of .2-Ligands 80
1.7.3.4 Method 4: Nucleophile Addition to .5-Complexes at the p-System 81
1.7.3.4.1 Variation 1: Cyclohexadienyl Complexes 81
1.7.3.4.2 Variation 2: Cycloheptadienyl Complexes 91
1.7.3.4.3 Variation 3: Cyclooctadienyl Complexes 92
1.7.3.4.4 Variation 4: Acyclic Dienyl Complexes 92
1.7.3.4.5 Variation 5: In Situ Generation of Acyclic Dienyl Complexes 94
1.7.3.4.6 Variation 6: Cyclopentadienyl Complexes 96
1.7.3.5 Method 5: Metal-Centered Reduction of .5-Complexes at the p-System 96
1.7.3.6 Method 6: Modification of .4-Complexes 96
1.7.3.6.1 Variation 1: By Acylation 97
1.7.3.6.2 Variation 2: By Lithiation and Addition of Electrophiles 97
1.7.3.6.3 Variation 3: By Palladium Coupling 99
1.7.3.6.4 Variation 4: Cyclization Reactions of .4-Diene Complexes 100
1.7.3.6.5 Variation 5: Oxidative Cyclization of .4-Diene Complexes 101
1.7.3.6.6 Variation 6: Nucleophile Addition to .4-Complexes at the p-System 102
1.7.3.6.7 Variation 7: Nucleophile Addition to .4-Complexes at a Carbonyl Ligand 103
1.7.3.6.8 Variation 8: Nucleophile Addition to .4-Complexes next to the p-System 103
1.7.3.6.9 Variation 9: Reactions of Enolates and Silyl Enol Ethers 107
1.7.3.6.10 Variation 10: Epoxide Formation and Cyclopropanation next to the p-System 108
1.7.3.6.11 Variation 11: Diol Synthesis next to the p-System 109
1.7.3.6.12 Variation 12: Epoxide Opening next to the p-System 110
1.7.3.6.13 Variation 13: Cycloaddition Reactions next to the p-System 110
1.7.3.6.14 Variation 14: By 1,3-Migration of a Tricarbonyliron Group 112
1.7.3.6.15 Variation 15: Functionalization of Cycloheptatriene Complexes 113
1.7.3.7 Method 7: Complexation of Heterodienes 114
1.7.3.8 Method 8: Additional Methods for the Formation of .4-Complexes 115
1.7.3.8.1 Variation 1: Alkylation of .3-Anions 115
1.7.3.8.2 Variation 2: From Pentacarbonyliron by Nucleophile Addition at Carbonyl 115
1.7.3.8.3 Variation 3: Exchange of Carbonyl for Phosphines, Phosphites, and Nitrosonium 116
1.7.3.8.4 Variation 4: Radical and Carbene Methods in the Presence of Iron Complexes 117
1.7.3.9 Method 9: Preparation of Nonracemic Complexes 117
1.7.3.9.1 Variation 1: Asymmetric Complexation 117
1.7.3.9.2 Variation 2: Asymmetric Modification and Kinetic Resolution of .4-Complexes 121
1.7.3.9.3 Variation 3: By Asymmetric Induction and Kinetic Resolution with .5-Complexes 122
1.7.3.9.4 Variation 4: Classical Resolution of Chiral .4-Complexes 122
1.7.3.9.5 Variation 5: Kinetic Resolution of Chiral .4-Complexes 124
Applications of Product Subclass 3 in Organic Synthesis 125
1.7.3.10 Method 10: Metal Removal To Give Organic Products 125
1.7.3.10.1 Variation 1: Decomplexation without Ligand Modification 125
1.7.3.10.2 Variation 2: Decomplexation with Ligand Modification 130
1.7.3.11 Method 11: Reactions next to .3-Complexes, Followed by Rearrangement 137
1.7.4 Product Subclass 4: Iron–Allyl Complexes 137
Synthesis of Product Subclass 4 137
1.7.4.1 Method 1: Protonation of Diene Complexes 137
1.7.4.1.1 Variation 1: From .2-Complexes 137
1.7.4.1.2 Variation 2: From .4-Complexes 138
1.7.4.1.3 Variation 3: During Direct Complexation of Allyl Alcohols and Dienes in the Presence of Acid 138
1.7.4.2 Method 2: Preparation by Leaving-Group Displacement from .2-Complexes 138
1.7.4.3 Method 3: Preparation by Opening Vinyl Epoxides and Cyclopropanes 139
1.7.4.3.1 Variation 1: From Epoxides 139
1.7.4.3.2 Variation 2: From Aziridines 141
1.7.4.3.3 Variation 3: From Cyclopropanes 141
1.7.4.3.4 Variation 4: From Cyclobutanes 142
1.7.4.4 Method 4: Nucleophile Addition at a Complexed p-System 142
1.7.4.4.1 Variation 1: Nucleophile Addition to .4-Complexes 142
1.7.4.4.2 Variation 2: Nucleophile Addition to .5-Complexes 143
1.7.4.4.3 Variation 3: Modification of Functionality and Ligand Exchange 144
1.7.4.5 Method 5: Nucleophile Addition to .3-Complexes next to the p-System 145
1.7.4.6 Method 6: Nucleophile Addition at a Carbonyl Ligand 146
1.7.4.6.1 Variation 1: Nucleophile Addition to .4-Complexes 146
1.7.4.6.2 Variation 2: Nucleophile Addition to .2,.2-Complexes 146
1.7.4.7 Method 7: Additional Methods for the Formation of .3-Complexes 146
1.7.4.7.1 Variation 1: Anionic .3-Complexes 146
1.7.4.7.2 Variation 2: Modification by Carbonyl Insertion 147
1.7.4.7.3 Variation 3: Modification by Alkene Insertion 147
1.7.4.7.4 Variation 4: From .4-Vinylketene Complexes 147
1.7.4.7.5 Variation 5: Reductive Methods To Make Anionic .3-Complexes 148
1.7.4.7.6 Variation 6: Exchange of Carbonyl for Nitrosonium 148
1.7.4.8 Method 8: Preparation of Nonracemic Complexes 148
Applications of Product Subclass 4 in Organic Synthesis 149
1.7.4.9 Method 9: Metal Removal To Give Organic Products 149
1.7.5 Product Subclass 5: Iron–Alkene Complexes 153
Synthesis of Product Subclass 5 153
1.7.5.1 Method 1: Direct Complexation of Alkenes 153
1.7.5.1.1 Variation 1: Ligand Exchange with a Butene Complex 153
1.7.5.1.2 Variation 2: Reaction with Nonacarbonyldiiron 153
1.7.5.1.3 Variation 3: Reaction with Pentacarbonyliron 154
1.7.5.2 Method 2: Preparation by Hydride Abstraction from .1-Complexes 154
1.7.5.3 Method 3: Preparation by Protonation of .1-Complexes 155
1.7.5.3.1 Variation 1: Protonation of .1-Allyl Complexes 155
1.7.5.3.2 Variation 2: Removal of Leaving Groups from .1-Alkyl Complexes 156
1.7.5.3.3 Variation 3: Protonation at Iron 156
1.7.5.4 Method 4: Reactions of .1-Allyl Complexes with Electrophiles 156
1.7.5.4.1 Variation 1: Reaction with Aldehydes and Ketones in the Presence of a Lewis Acid 156
1.7.5.4.2 Variation 2: Reaction with Activated Alkenes 157
1.7.5.4.3 Variation 3: Reaction with .2-Alkene Complexes 158
1.7.5.4.4 Variation 4: Reaction with .5-Dienyl Complexes 158
1.7.5.5 Method 5: Nucleophile Addition at a Complexed p-System 158
1.7.5.5.1 Variation 1: Nucleophile Addition to .2-Complexes 158
1.7.5.5.2 Variation 2: Nucleophile Addition to .3-Complexes 159
1.7.5.5.3 Variation 3: Nucleophile Addition to .4-Complexes 159
1.7.5.5.4 Variation 4: Nucleophile Addition to .5-Complexes 160
1.7.5.6 Method 6: Preparation of Nonracemic Complexes 160
Applications of Product Subclass 5 in Organic Synthesis 161
1.7.5.7 Method 7: Metal Removal To Give Organic Products 161
1.7.6 Product Subclass 6: Iron–Carbene Complexes 162
Synthesis of Product Subclass 6 162
1.7.6.1 Method 1: Preparation by the Fischer Carbene Method 162
1.7.6.2 Method 2: From Azadiene Iron Complexes 163
1.7.6.3 Method 3: Removal of Leaving Groups from Metal–Alkyl Complexes 164
1.7.6.4 Method 4: Formation of Iron–N-Heterocyclic Carbene Complexes 164
1.7.6.5 Method 5: Modification of Other Carbene Complexes 165
1.7.6.5.1 Variation 1: Exchange of Substituents at the Carbene Complex 165
1.7.6.5.2 Variation 2: Reaction at Functional Groups Adjacent to the Carbene Complex 165
1.7.6.5.3 Variation 3: Photolysis of Carbene Complexes 166
1.7.6.6 Method 6: Preparation by Ring Expansion 166
1.7.6.7 Method 7: Preparation of Bridging Carbene Complexes 166
1.7.6.8 Method 8: Reduction of Cationic µ-CH Bridging Carbyne Complexes 169
1.7.6.9 Method 9: Preparation of Nonracemic Complexes 169
Applications of Product Subclass 6 in Organic Synthesis 169
1.7.6.10 Method 10: Cyclopropanation by Transfer of Diazo Esters 169
1.7.6.11 Method 11: C--H Insertion Reactions 170
1.7.6.12 Method 12: Cyclization with Alkynes To Form Naphthols and Furans 170
1.7.6.13 Method 13: Removal of the Metal by Oxidation 171
1.7.7 Product Subclass 7: Iron–.1-Alkyl, -Alkenyl, -Alkynyl, and -Heteroatom-Bound Complexes 171
Synthesis of Product Subclass 7 171
1.7.7.1 Method 1: Metal Addition to Electrophiles 171
1.7.7.2 Method 2: Metal Addition to Nucleophiles/Lewis Bases 172
1.7.7.3 Method 3: Nucleophile Addition and Deprotonation Reactions 172
1.7.7.4 Method 4: Additional Methods for the Formation of .1-Alkyl Complexes 173
1.7.7.4.1 Variation 1: Nucleophile Addition to .1-Carbene Complexes 173
1.7.7.4.2 Variation 2: Nucleophile Addition to .2-Alkyne Complexes 174
1.7.7.4.3 Variation 3: Nucleophile Addition to Dicarbonyl(.5-cyclopentadienyl)iron Halides 174
1.7.7.4.4 Variation 4: Nucleophile Addition to Carbonyl Complexes 175
1.7.7.4.5 Variation 5: .1-Aryl and .1-Alkynyl Complexes by Catalyzed Coupling Reactions 176
1.7.7.4.6 Variation 6: .1-Alkynyl Complexes from Alkynes 176
1.7.7.4.7 Variation 7: Deprotonation of .2-Alkene Complexes 176
1.7.7.4.8 Variation 8: Introduction of Sulfur and Selenium to Di-µ-carbonyldicarbonylbis(.5-cyclopentadienyl)diiron 176
1.7.7.5 Method 5: Reactions of Allyl Complexes 176
1.7.7.5.1 Variation 1: .1-Allyl Complexes 177
1.7.7.5.2 Variation 2: .3-Allyl Complexes 177
1.7.7.6 Method 6: Modification of Ligands in .1-Complexes 177
1.7.7.7 Method 7: Preparation of Nonracemic Complexes 179
Applications of Product Subclass 7 in Organic Synthesis 181
1.7.7.8 Method 8: Oxidation of .1-Products 181
1.7.7.8.1 Variation 1: Metal Removal To Generate a Carboxylic Acid 181
1.7.7.8.2 Variation 2: Metal Removal To Generate an Ester 181
1.7.7.8.3 Variation 3: Metal Removal To Generate an Amide 182
1.7.7.8.4 Variation 4: Metal Removal To Generate Alkyl Bromides or Epoxides 183
1.7.7.8.5 Variation 5: Metal Removal To Generate Ketones and Lactones 183
1.7.7.8.6 Variation 6: Reactions as Arylating Agents 185
1.7.7.8.7 Variation 7: Metal Removal with Transmetalation to Mercury 186
1.7.7.9 Method 9: Additional Methods for Decomplexation of .1-Alkyl Complexes 186
1.7.7.9.1 Variation 1: Disproportionation of .1-Products 186
1.7.7.9.2 Variation 2: Photochemical Dimerization 186
1.7.7.9.3 Variation 3: Asymmetric Cycloaddition 187
1.7.7.10 Method 10: Formation and Reaction of Oxyallyl Cation Complexes 187
1.7.7.10.1 Variation 1: [4 + 3] Cycloaddition 187
1.7.7.10.2 Variation 2: [2 + 3] Cycloaddition 187
1.7.7.10.3 Variation 3: Electrophilic Substitution 188
1.7.7.11 Method 11: Application of Collman’s Reagent and Related Tetracarbonylferrate Salts 188
1.7.7.11.1 Variation 1: Cyclization to Alkenes 189
1.7.7.11.2 Variation 2: Reductions with the Tetracarbonylhydroferrate Complex 190
1.7.8.17 Ferrocenes 220
1.7.8.17.1 Synthesis of Ferrocenes 220
1.7.8.17.1.1 Method 1: Monosubstituted and 1,1'-Disubstituted Ferrocenes by Metal-Mediated Procedures 220
1.7.8.17.1.1.1 Variation 1: Synthesis of Halogenated Ferrocenes 220
1.7.8.17.1.1.2 Variation 2: Synthesis of Hydroxy- and Alkoxyferrocenes and 1,1'-Dihydroxyferrocene 222
1.7.8.17.1.1.3 Variation 3: Synthesis of Aminoferrocenes and 1,1'-Diaminoferrocenes 223
1.7.8.17.1.1.4 Variation 4: Synthesis of Carboxyferrocene, Formylferrocene, 1,1'-Dicarboxyferrocene, and 1,1'-Diformylferrocene 224
1.7.8.17.1.1.5 Variation 5: Synthesis of 1'-Formyl-2,5-dimethylazaferrocene 226
1.7.8.17.1.2 Method 2: Acyl- and Alkenylferrocenes under Friedel–Crafts Conditions 226
1.7.8.17.1.2.1 Variation 1: Synthesis of Alkenylferrocenes and 1,1'-Dialkenylferrocenes 227
1.7.8.17.1.3 Method 3: Chiral Ferrocenylalkyl Alcohols and Ferrocenylalkylamines 227
1.7.8.17.1.3.1 Variation 1: Via Stereoselective Alkylation and Arylation of Formylferrocene 228
1.7.8.17.1.3.2 Variation 2: Via Stereoselective Reduction of Acyl Intermediates 230
1.7.8.17.1.3.3 Variation 3: Via Enzymatic Methods 231
1.7.8.17.1.4 Method 4: Oxazol-2-ylferrocenes 232
1.7.8.17.1.5 Method 5: Chiral Ferrocenyl Aminals 233
1.7.8.17.1.6 Method 6: Chiral Ferrocenyl Sulfoxides 233
1.7.8.17.1.7 Method 7: Chiral 1,2-Disubstituted Ferrocenes by Diastereoselective Functionalization 234
1.7.8.17.1.7.1 Variation 1: From 1-Ferrocenyl-N,N-dimethylethylamine 234
1.7.8.17.1.7.2 Variation 2: From (4,5-Dihydrooxazol-2-yl)ferrocenes 236
1.7.8.17.1.7.3 Variation 3: From Chiral Ferrocenyl Acetals and Aminals 237
1.7.8.17.1.7.4 Variation 4: From Chiral Ferrocenyl Sulfoxides 238
1.7.8.17.1.8 Method 8: C--C Bond Formation by Substitution of Ferrocenyl Alcohols 238
1.7.8.17.1.9 Method 9: Cross-Coupling Reactions of Iodoferrocene and Ferrocenylboronic Acid 239
1.7.8.17.1.10 Method 10: Chiral 1,2-Disubstituted Ferrocenes via Enantioselective Sparteine-Mediated Lithiation 240
1.7.8.17.1.11 Method 11: 1,1',2-Trisubstituted Ferrocenes (BPPF-Type Ligands) 240
1.7.8.17.1.12 Method 12: Tetrasubstituted Ferrocenes from 1,1'-Bis(1-methoxyalkyl)ferrocenes 240
1.7.8.17.1.13 Method 13: Chiral Biferrocenes 241
1.7.8.17.2 Applications of Ferrocenes in Organic Synthesis 241
1.7.8.17.2.1 Method 1: Catalytic Enantioselective Hydrogenation 242
1.7.8.17.2.2 Method 2: Catalytic Enantioselective Hydroboration 249
1.7.8.17.2.3 Method 3: Catalytic Enantioselective Hydrosilylation 250
1.7.8.17.2.4 Method 4: Catalytic Enantioselective Allylic Substitution 251
1.7.8.17.2.5 Method 5: Catalytic Enantioselective Aldol Reactions 253
1.7.8.17.2.6 Method 6: Diethylzinc Addition to Aldehydes 253
1.7.8.17.2.7 Method 7: Michael Addition Reactions 255
1.7.8.17.2.8 Method 8: Asymmetric Arylation of Aldehydes 255
1.7.8.17.2.9 Method 9: Metal-Catalyzed [3 + 2] Cycloaddition 255
1.7.8.17.2.10 Method 10: Ring Opening of Azabenzonorbornadienes 257
1.7.8.17.2.11 Method 11: Applications as Bioactives 257
1.7.8.17.2.12 Method 12: Applications as Bioconjugates 260
1.7.8.17.2.13 Method 13: Applications in Electron Reservoirs and in Nonlinear Optics (NLO) 262
1.7.8.17.2.14 Method 14: Applications in Oligomers and Polymers 268
1.7.8.17.2.15 Method 15: Applications as Functional Devices 270
Volume 3: Compounds of Groups 12 and 11 (Zn, Cd, Hg, Cu, Ag, Au) 282
3.1 Product Class 1: Organometallic Complexes of Zinc 282
3.1.11 Organometallic Complexes of Zinc 282
3.1.11.1 Zinc-Catalyzed Organic Transformations 282
3.1.11.1.1 Method 1: Zinc-Catalyzed C--C Bond-Forming Reactions 282
3.1.11.1.1.1 Variation 1: Zinc-Catalyzed Aldol Reaction 282
3.1.11.1.1.2 Variation 2: Zinc-Catalyzed Henry Reaction 296
3.1.11.1.1.3 Variation 3: Zinc-Catalyzed Mannich Reaction 301
3.1.11.1.1.4 Variation 4: Zinc-Catalyzed Michael Reaction 306
3.1.11.1.1.5 Variation 5: Zinc-Catalyzed Friedel–Crafts Reactions 311
3.1.11.1.1.6 Variation 6: Zinc-Catalyzed Alkynylation Reactions 317
3.1.11.1.1.7 Variation 7: Other Zinc-Catalyzed C--C Bond-Forming Reactions 321
3.1.11.1.2 Method 2: Zinc-Catalyzed C--N Bond-Forming Reactions 329
3.1.11.1.3 Method 3: Zinc-Catalyzed C--O Bond-Forming Reactions 350
3.1.11.1.4 Method 4: Zinc-Catalyzed Reduction Reactions 355
3.1.11.1.5 Method 5: Zinc-Catalyzed Oxidation Reactions 366
Volume 4: Compounds of Group 15 (As, Sb, Bi) and Silicon Compounds 378
4.4 Product Class 4: Silicon Compounds 378
4.4.46 Product Subclass 46: Siloles 378
Synthesis of Product Subclass 46 379
4.4.46.1 Ring Synthesis from Acyclic Compounds 379
4.4.46.1.1 Method 1: Formation of One Si--C Bond of the Silole 379
4.4.46.1.1.1 Variation 1: Nucleophilic Addition of a Carbanion to the Silicon Atom 379
4.4.46.1.1.2 Variation 2: Intramolecular Hydrosilylation of Alkynes 379
4.4.46.1.1.3 Variation 3: Reductive Cyclization of Alkynes 380
4.4.46.1.1.4 Variation 4: Nucleophilic Addition of a Silyl Anion to Alkynes 381
4.4.46.1.1.5 Variation 5: Electrophilic Substitution of an Aromatic Ring with a Silyl Cation 382
4.4.46.1.1.6 Variation 6: Rhodium-Catalyzed Intramolecular trans-Bis-silylation of Alkynes 382
4.4.46.1.1.7 Variation 7: Gold-Catalyzed Intramolecular trans-Allylsilylation of Alkynes 383
4.4.46.1.1.8 Variation 8: Palladium-Catalyzed Intramolecular C(sp2)--Si Coupling via Cleavage of a C(sp3)--Si Bond 383
4.4.46.1.2 Method 2: Formation of C--C Bonds of the Silole 384
4.4.46.1.2.1 Variation 1: Reductive Cyclization of Dialkynylsilanes 384
4.4.46.1.2.2 Variation 2: Intramolecular Cross-Coupling Reaction of Diarylsilanes 386
4.4.46.1.2.3 Variation 3: Iridium-Catalyzed [2 + 2 + 2] Cycloaddition of Silicon-Bridged Diynes with Alkynes 387
4.4.46.1.2.4 Variation 4: Ring-Closing Metathesis of Alkenyl(2-alkenylphenyl)silanes 388
4.4.46.1.3 Method 3: Formation of Two Si--C Bonds of the Silole 389
4.4.46.1.3.1 Variation 1: Nucleophilic Attack of Dianions at the Silicon Atom 389
4.4.46.1.3.2 Variation 2: Transmetalation of Zirconium-Containing Metallacycles 391
4.4.46.1.3.3 Variation 3: Ruthenium-Catalyzed Double Hydrosilylation of Buta-1,3-diynes 392
4.4.46.1.4 Method 4: Formation of One Si--C and One C--C Bond of the Silole 392
4.4.46.1.4.1 Variation 1: Rhodium-Catalyzed Coupling of (2-Silylphenyl)boronic Acids with Alkynes 392
4.4.46.1.4.2 Variation 2: Palladium-Catalyzed Intermolecular Coupling of 2-Silylaryl Bromides with Alkynes 393
4.4.46.1.5 Method 5: Formation of Two Si--C Bonds and One C--C Bond of the Silole 393
4.4.46.1.5.1 Variation 1: Palladium-Catalyzed Coupling of Silylboronic Esters with Alkynes 393
4.4.46.1.6 Method 6: Rearrangement of a Rhodium–Alkene Complex 394
4.4.46.2 Ring Synthesis by Transformation from Another Ring System 395
4.4.46.2.1 Method 1: Ring Expansion of Silirenes 395
Volume 20: Three Carbon--Heteroatom Bonds: Acid Halides Carboxylic Acids and Acid Salts
20.5 Product Class 5: Carboxylic Acid Esters 398
20.5.9.2 2,2-Diheteroatom-Substituted Alkanoic Acid Esters 398
20.5.9.2.1 Method 1: Formation from ß,.-Unsaturated a-Oxo Esters 398
20.5.9.2.2 Method 2: Formation from a-Sulfanyl and a-Thioxo Esters 402
20.5.9.2.2.1 Variation 1: Thia-Diels–Alder Reactions of Dithiooxalates 402
20.5.9.2.2.2 Variation 2: Desulfurizing Difluorination of 2-Sulfanylacetates 403
20.5.9.2.3 Method 3: Formation of 2,2-Dinitrogen-Substituted Esters 404
20.5.9.2.3.1 Variation 1: Formation of 2,2-Dinitrogen-Substituted Esters by Displacement of Halide 404
20.5.9.2.3.2 Variation 2: Formation of 2,2-Dinitrogen-Substituted Esters by Addition to a,ß-Unsaturated Esters 405
20.5.9.2.3.3 Variation 3: Formation of 2,2-Dinitrogen-Substituted Esters by Addition to Imino- and Azocarboxylates 406
20.5.9.2.3.4 Variation 4: Formation of 2,2-Dinitrogen-Substituted Esters by a-Nitration of Esters 407
20.5.9.2.4 Method 4: Formation by Halogenation of ß-Oxo Esters 408
20.5.9.2.5 Method 5: Formation by Nucleophilic Attack of the a-Carbon of Alkanoic Acid Esters 411
20.5.9.2.5.1 Variation 1: Metal-Mediated C--C Bond Formation from Trihaloacetates and 2,2-Difluoro-2-silylacetates 411
20.5.9.2.5.2 Variation 2: Nucleophilic Substitution at the a-Carbon of Dihaloacetates or Diheteroatom-Substituted Ketene Silyl Acetals 414
20.5.9.2.5.3 Variation 3: Nucleophilic Substitution of Alkyl Chloroformates 415
20.5.9.2.6 Method 6: Formation of a,a-Dihalo Esters by Radical-Mediated Transformations 416
20.5.9.2.7 Method 7: Difluorination of Acid Chlorides 419
Volume 26: Ketones 424
26.8 Product Class 8: Aryl Ketones 424
26.8.4 Aryl Ketones 424
26.8.4.1 Synthesis from Arenes 424
26.8.4.1.1 Friedel–Crafts Acylation 424
26.8.4.1.1.1 Method 1: Acylation Using Acid Chlorides or Anhydrides 425
26.8.4.1.1.1.1 Variation 1: With p-Block Metal Catalysts 425
26.8.4.1.1.1.2 Variation 2: With Transition-Metal Catalysts 427
26.8.4.1.1.1.3 Variation 3: With Lanthanides and Actinides 430
26.8.4.1.1.1.4 Variation 4: With Solid-Supported Catalysts 432
26.8.4.1.1.1.5 Variation 5: With Brønsted Acid Catalysts 433
26.8.4.1.1.2 Method 2: Acylation Using Carboxylic Acids 435
26.8.4.1.1.3 Method 3: Acylation Using Esters 437
26.8.4.2 Synthesis from Arylmetals 438
26.8.4.2.1 Method 1: Synthesis from Arenes via C--H Activation 439
26.8.4.2.2 Method 2: Synthesis from Arylboron Reagents 440
26.8.4.2.2.1 Variation 1: With Acid Chlorides or Anhydrides 440
26.8.4.2.2.2 Variation 2: With Esters 441
26.8.4.2.2.3 Variation 3: With Nitriles 442
26.8.4.2.2.4 Variation 4: With Aldehydes 443
26.8.4.2.3 Method 3: Synthesis from Carboxylic Acids 444
26.8.4.2.4 Method 4: Synthesis from Sulfinic Acids 444
26.8.4.3 Synthesis from Aryl Halides 445
26.8.4.3.1 Method 1: Synthesis via Organometallic Reagents 445
26.8.4.3.1.1 Variation 1: With Amides 445
26.8.4.3.1.2 Variation 2: With Acid Chlorides 447
26.8.4.3.1.3 Variation 3: With Vinyl Ethers/Acetates/Enamines/Enamides 449
26.8.4.3.1.4 Variation 4: With Hydrazones 451
26.8.4.3.2 Method 2: Carbonylation 452
26.8.4.4 Synthesis from Acyl Anion Equivalents 457
26.8.4.5 Synthesis via Oxidation 462
26.8.4.5.1 Method 1: Oxidation of Benzylic Alcohols 462
26.8.4.5.2 Method 2: Oxidation of Aryl Methylenes 465
26.8.4.6 Synthesis via Rearrangement 466
26.8.4.6.1 Method 1: Fries Rearrangement 466
26.8.4.6.2 Method 2: Alkyne Hydration/Rearrangement 467
26.8.4.7 Synthesis via Cycloaddition of Arynes 468
Author Index 476
Abbreviations 516
List of All Volumes 522

Erscheint lt. Verlag 14.5.2014
Reihe/Serie Science of Synthesis
Verlagsort Stuttgart
Sprache englisch
Themenwelt Naturwissenschaften Chemie Organische Chemie
Technik
Schlagworte Chemie • Chemische Synthese • chemistry of organic compound • chemistry organic reaction • chemistry reference work • chemistry synthetic methods • compound functional group • compound organic synthesis • Mechanism • Method • methods in organic synthesis • methods peptide synthesis • Organic Chemistry • organic chemistry functional groups • organic chemistry reactions • organic chemistry review • organic chemistry synthesis • organic method • organic reaction • organic reaction mechanism • Organic Syntheses • organic synthesis • organic synthesis reference work • Organisch-chemische Synthese • Organische Chemie • Peptide synthesis • Practical • practical organic chemistry • Reaction • reference work • Review • review organic synthesis • review synthetic methods • Synthese • Synthetic chemistry • Synthetic Methods • Synthetic Organic Chemistry • synthetic transformation
ISBN-10 3-13-198401-5 / 3131984015
ISBN-13 978-3-13-198401-2 / 9783131984012
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 5,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Basiswissen der Chemie

von Charles E. Mortimer; Ulrich Müller

eBook Download (2019)
Georg Thieme Verlag KG
CHF 82,95