Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Quadratic and Higher Degree Forms (eBook)

eBook Download: PDF
2013 | 2013
IX, 298 Seiten
Springer New York (Verlag)
978-1-4614-7488-3 (ISBN)

Lese- und Medienproben

Quadratic and Higher Degree Forms -
Systemvoraussetzungen
139,09 inkl. MwSt
(CHF 135,85)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

In the last decade, the areas of quadratic and higher degree forms have witnessed dramatic advances. This volume is an outgrowth of three seminal conferences on these topics held in 2009, two at the University of Florida and one at the Arizona Winter School. The volume also includes papers from the two focused weeks on quadratic forms and integral lattices at the University of Florida in 2010.Topics discussed include the links between quadratic forms and automorphic forms, representation of integers and forms by quadratic forms, connections between quadratic forms and lattices, and algorithms for quaternion algebras and quadratic forms. The book will be of interest to graduate students and mathematicians wishing to study quadratic and higher degree forms, as well as to established researchers in these areas.

Quadratic and Higher Degree Forms contains research and semi-expository papers that stem from the presentations at conferences at the University of Florida as well as survey lectures on quadratic forms based on the instructional workshop for graduate students held at the Arizona Winter School. The survey papers in the volume provide an excellent introduction to various aspects of the theory of quadratic forms starting from the basic concepts and provide a glimpse of some of the exciting questions currently being investigated. The research and expository papers present the latest advances on quadratic and higher degree forms and their connections with various branches of mathematics.


In the last decade, the areas of quadratic and higher degree forms have witnessed dramatic advances. This volume is an outgrowth of three seminal conferences on these topics held in 2009, two at the University of Florida and one at the Arizona Winter School. The volume also includes papers from the two focused weeks on quadratic forms and integral lattices at the University of Florida in 2010.Topics discussed include the links between quadratic forms and automorphic forms, representation of integers and forms by quadratic forms, connections between quadratic forms and lattices, and algorithms for quaternion algebras and quadratic forms. The book will be of interest to graduate students and mathematicians wishing to study quadratic and higher degree forms, as well as to established researchers in these areas. Quadratic and Higher Degree Forms contains research and semi-expository papers that stem from the presentations at conferences at the University of Florida as well as survey lectures on quadratic forms based on the instructional workshop for graduate students held at the Arizona Winter School. The survey papers in the volume provide an excellent introduction to various aspects of the theory of quadratic forms starting from the basic concepts and provide a glimpse of some of the exciting questions currently being investigated. The research and expository papers present the latest advances on quadratic and higher degree forms and their connections with various branches of mathematics.

Preface.- Toy Models for D. H. Lehmer's Conjecture II (E. Bannai, T. Miezaki).- On the Representation of an Integer by X2+Y2+Z2 and the Modular Equations of Degree 3 and 5 (A. Berkovich).- Almost Universal Ternary Sums of Squares and Triangular Numbers (W. Chan, A. Haensch).- Weighted Generating Functions for Type II Lattices and Codes (N. Elkies, S. Kominers).- Quadratic and Automorphic Forms (J. Hanke).- Integral Positive Ternary Quadratic Forms (W. Jagy).- Some Aspects of the Algebraic Theory of Quadratic Forms (R. Parimala).- On the Length of Binary Forms (B. Reznick).- Representation of Quadratic Forms by Integral Quadratic Forms (R. Schulze-Pillot).- Identifying the Matrix Ring (J. Voight).

Erscheint lt. Verlag 13.8.2013
Reihe/Serie Developments in Mathematics
Developments in Mathematics
Zusatzinfo IX, 298 p.
Verlagsort New York
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Mathematik / Informatik Mathematik Graphentheorie
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Schlagworte advances number theory • combinatorics • higher degree forms • hypergeometric functions • problems representation theory • quadratic forms • Spherical Harmonics
ISBN-10 1-4614-7488-4 / 1461474884
ISBN-13 978-1-4614-7488-3 / 9781461474883
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich