Analysis and Continuum Mechanics
Springer Berlin (Verlag)
978-3-540-50917-2 (ISBN)
The 39 papers in this collection are devoted mostly to the exact mathematical analysis of problems in continuum mechanics, but also to problems of a purely mathematical nature mainly connected to partial differential equations from continuum physics. All the papers are dedicated to J. Serrin and were originally published in the "Archive of Rational Mechanics and Analysis".
Differentiability of the Blow-up Curve for One Dimensional Nonlinear Wave Equations.- On the Existence of Positive Entire Solutions of a Semilinear Elliptic Equation.- The Uniqueness of Hill's Spherical Vortex.- Lyapunov Functions for Thermomechanics with Spatially Varying Boundary Temperatures.- A Semilinear Elliptic Problem Which Is Not Selfadjoint.- A Multiparameter Study of a Boundary Value Problem from Chemical Reactor Theory.- Boundary Regularity for Quasiminima.- Positively Invariant Regions for a Problem in Phase Transitions.- A Note on a Theorem of R. Duffin.- The Boundary Value Problems for Non-Linear Elliptic Equations and the Maximum Principle for Euler-Lagrange Equations.- Qualitative Properties of Large Buckled States of Spherical Shells.- Stable Equilibrium Configurations of Elastic Crystals.- Inequalities Between Dirichlet and Neumann Eigenvalues.- Embeddings of Anisotropic Sobolev Spaces.- Monotonic Decreasing and Asymptotic Behavior of the Kinetic Energy for Weak Solutions of the Navier-Stokes Equations in Exterior Domains.- Quasilinear Hyperbolic Systems with Involutions.- A Generalized Norton-Hoff Model and the Prandtl-Reuss Law of Plasticity.- Symmetry and the Bifurcation of Capillary-Gravity Waves.- Smoothness of Linear Laminates.- On the Behavior of the Derivatives of Minimizers near Singular Points.- Ground States and Dirichlet Problems for ??u = f(u) in R2.- On Phase Transitions with Bulk, Interfacial, and Boundary Energy.- Spectral Properties of the Laplacian in the Complement of a Deformed Cylinder.- A New Proof of Moser's Parabolic Harnack Inequality Using the Old Ideas of Nash.- Weakly Decaying Energy Separation and Uniqueness of Motions of an Elastic-Plastic Oscillator with Work-Hardening.- On Effects of Virtual Inertia DuringDiffusion of a Dispersed Medium in a Suspension.- Existence of Positive Solutions for Semilinear Elliptic Equations in General Domains.- Assembling a Rearrangement.- Asymptotic Behaviour of Solutions of Semi-Linear Elliptic Equations in ?n.- Existence Theorems Concerning Simple Integrals of the Calculus of Variations for Discontinuous Solutions.- On the Uniqueness of Flow of a Navier-Stokes Fluid Due to a Stretching Boundary.- On the Behavior at Infinity of Solutions of Elliptic Systems with a Finite Energy Integral.- A Class of Quasilinear Differential Inequalities Whose Solutions Are Ultimately Constant.- Singular Solutions for Some Semilinear Elliptic Equations.- Eventual C?-Regularity and Concavity for Flows in One-Dimensional Porous Media.- Fine Phase Mixtures as Minimizers of Energy.- Fit Regions and Functions of Bounded Variation.- The Lavrentiev Phenomenon for Invariant Variational Problems.- Steady, Structured Shock Waves. Part 1: Thermoelastic Materials.- Published Works of James Serrin.- Places of First Publication.
Erscheint lt. Verlag | 31.8.1989 |
---|---|
Zusatzinfo | X, 829 p. 5 illus. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 170 x 242 mm |
Gewicht | 1418 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Naturwissenschaften ► Physik / Astronomie ► Allgemeines / Lexika | |
Naturwissenschaften ► Physik / Astronomie ► Mechanik | |
Technik ► Maschinenbau | |
Schlagworte | Lagrange Equation • Materials • Mechanics • Navier-Stokes Equation • Nonlinear Wave • Plasticity • Porous Media • Thermomechanics |
ISBN-10 | 3-540-50917-8 / 3540509178 |
ISBN-13 | 978-3-540-50917-2 / 9783540509172 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich