Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Kernel-based Data Fusion for Machine Learning - Shi Yu, Léon-Charles Tranchevent, Bart Moor, Yves Moreau

Kernel-based Data Fusion for Machine Learning

Methods and Applications in Bioinformatics and Text Mining
Buch | Softcover
XIV, 214 Seiten
2013 | 2011
Springer Berlin (Verlag)
978-3-642-26751-2 (ISBN)
CHF 249,95 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Data fusion problems arise in many different fields. This book provides a specific introduction to solve data fusion problems using support vector machines. The reader will require a good knowledge of data mining, machine learning and linear algebra.

Data fusion problems arise frequently in many different fields. This book provides a specific introduction to data fusion problems using support vector machines. In the first part, this book begins with a brief survey of additive models and Rayleigh quotient objectives in machine learning, and then introduces kernel fusion as the additive expansion of support vector machines in the dual problem. The second part presents several novel kernel fusion algorithms and some real applications in supervised and unsupervised learning. The last part of the book substantiates the value of the proposed theories and algorithms in MerKator, an open software to identify disease relevant genes based on the integration of heterogeneous genomic data sources in multiple species.


The topics presented in this book are meant for researchers or students who use support vector machines. Several topics addressed in the book may also be interesting to computational biologists who want to tackle data fusion challenges in real applications. The background required of the reader is a good knowledge of data mining, machine learning and linear algebra.

Introduction.- Rayleigh quotient-type problems in machine learning.- Ln-norm Multiple Kernel Learning and Least Squares Support VectorMachines.- Optimized data fusion for kernel k-means Clustering.- Multi-view text mining for disease gene prioritization and clustering.- Optimized data fusion for k-means Laplacian Clustering.- Weighted Multiple Kernel Canonical Correlation.- Cross-species candidate gene prioritization with MerKator.- Conclusion.

From the reviews:

"The book provides an introduction to data fusion problems using support vector machines (SVMs). ... The book is meant for researchers, scientists and engineers using SVMs, or other statistical learning methods, but it also may be used as a reference material for graduate courses in machine learning and data mining." (Florin Gorunescu, Zentralblatt MATH, Vol. 1227, 2012)

Erscheint lt. Verlag 21.4.2013
Reihe/Serie Studies in Computational Intelligence
Zusatzinfo XIV, 214 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 352 g
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Informatik Weitere Themen Bioinformatik
Naturwissenschaften Biologie
Technik
Schlagworte Bioinformatics • Computational Intelligence • data fusion • Kernel Method • Text Mining
ISBN-10 3-642-26751-3 / 3642267513
ISBN-13 978-3-642-26751-2 / 9783642267512
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
CHF 39,20