Nicht aus der Schweiz? Besuchen Sie lehmanns.de

The Naïve Bayes Model for Unsupervised Word Sense Disambiguation (eBook)

Aspects Concerning Feature Selection
eBook Download: PDF
2012 | 2013
XIII, 70 Seiten
Springer Berlin (Verlag)
978-3-642-33693-5 (ISBN)

Lese- und Medienproben

The Naïve Bayes Model for Unsupervised Word Sense Disambiguation - Florentina T. Hristea
Systemvoraussetzungen
39,58 inkl. MwSt
(CHF 38,65)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book presents recent advances (from 2008 to 2012) concerning use of the Naïve Bayes model in unsupervised word sense disambiguation (WSD).

While WSD, in general, has a number of important applications in various fields of artificial intelligence (information retrieval, text processing, machine translation, message understanding, man-machine communication etc.), unsupervised WSD is considered important because it is language-independent and does not require previously annotated corpora. The Naïve Bayes model has been widely used in supervised WSD, but its use in unsupervised WSD has led to more modest disambiguation results and has been less frequent. It seems that the potential of this statistical model with respect to unsupervised WSD continues to remain insufficiently explored.

The present book contends that the Naïve Bayes model needs to be fed knowledge in order to perform well as a clustering technique for unsupervised WSD and examines three entirely different sources of such knowledge for feature selection: WordNet, dependency relations and web N-grams. WSD with an underlying Naïve Bayes model is ultimately positioned on the border between unsupervised and knowledge-based techniques. The benefits of feeding knowledge (of various natures) to a knowledge-lean algorithm for unsupervised WSD that uses the Naïve Bayes model as clustering technique are clearly highlighted. The discussion shows that the Naïve Bayes model still holds promise for the open problem of unsupervised WSD.



Florentina T. Hristea is a graduate of the Faculty of Mathematics and Computer Science of the University of Bucharest in 1984. She received her Ph.D. in Mathematics, from the same university, in 1996. She is currently Associate Professor of the Faculty of Mathematics and Computer Science, University of Bucharest. Her current research field is artificial intelligence, with specialization in natural language processing (NLP), as well as computational statistics and data analysis with applications in NLP. She has been Principal Investigator in several national and international research-development projects in the field of statistical NLP. Dr. Hristea is author or co-author of 8 books and of various scientific papers in the fields of computational statistics and natural language processing, respectively, out of which 28 are papers in refereed journals. Dr. Hristea is an elected member of ISI (International Statistical Institute) and of IRF (Information Retrieval Facility; member of the expert pool). She is a member of GWA (Global WordNet Association). Dr. Hristea is Co-Editor of 'Central European Journal of Computer Science' (published by Versita and Springer Verlag). She is equally a member of the Editorial Review Board of 'Artificial Intelligence Research' (Sciedu Press, Canada). Dr. Hristea was a Fulbright Research Fellow at Princeton University, U.S.A., in 2004.

Florentina T. Hristea is a graduate of the Faculty of Mathematics and Computer Science of the University of Bucharest in 1984. She received her Ph.D. in Mathematics, from the same university, in 1996. She is currently Associate Professor of the Faculty of Mathematics and Computer Science, University of Bucharest. Her current research field is artificial intelligence, with specialization in natural language processing (NLP), as well as computational statistics and data analysis with applications in NLP. She has been Principal Investigator in several national and international research-development projects in the field of statistical NLP. Dr. Hristea is author or co-author of 8 books and of various scientific papers in the fields of computational statistics and natural language processing, respectively, out of which 28 are papers in refereed journals. Dr. Hristea is an elected member of ISI (International Statistical Institute) and of IRF (Information Retrieval Facility; member of the expert pool). She is a member of GWA (Global WordNet Association). Dr. Hristea is Co-Editor of “Central European Journal of Computer Science” (published by Versita and Springer Verlag). She is equally a member of the Editorial Review Board of “Artificial Intelligence Research” (Sciedu Press, Canada). Dr. Hristea was a Fulbright Research Fellow at Princeton University, U.S.A., in 2004.

1.Preliminaries.- 2.The Naïve Bayes Model in the Context of Word Sense Disambiguation.- 3.Semantic WordNet-based Feature Selection.- 4.Syntactic Dependency-based Feature Selection.- 5.N-Gram Features for Unsupervised WSD with an Underlying Naïve Bayes Model References.- Index.​  

Erscheint lt. Verlag 7.11.2012
Reihe/Serie SpringerBriefs in Statistics
SpringerBriefs in Statistics
Zusatzinfo XIII, 70 p. 4 illus.
Verlagsort Berlin
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Schlagworte 62-XX, 91B70, 68-XX, 68Txx, 68T50 • Bayesian classification • Expectation-Maximization algorithm • Feature Selection • Naïve Bayes model • Word sense disambiguation
ISBN-10 3-642-33693-0 / 3642336930
ISBN-13 978-3-642-33693-5 / 9783642336935
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 1,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
CHF 37,95
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
CHF 16,95