Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Predictive Modular Neural Networks - Vassilios Petridis, Athanasios Kehagias

Predictive Modular Neural Networks

Applications to Time Series
Buch | Softcover
314 Seiten
2012 | Softcover reprint of the original 1st ed. 1998
Springer-Verlag New York Inc.
978-1-4613-7540-1 (ISBN)
CHF 149,75 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
The subject of this book is predictive modular neural networks and their ap­ plication to time series problems: classification, prediction and identification. The intended audience is researchers and graduate students in the fields of neural networks, computer science, statistical pattern recognition, statistics, control theory and econometrics. Biologists, neurophysiologists and medical engineers may also find this book interesting. In the last decade the neural networks community has shown intense interest in both modular methods and time series problems. Similar interest has been expressed for many years in other fields as well, most notably in statistics, control theory, econometrics etc. There is a considerable overlap (not always recognized) of ideas and methods between these fields. Modular neural networks come by many other names, for instance multiple models, local models and mixtures of experts. The basic idea is to independently develop several "subnetworks" (modules), which may perform the same or re­ lated tasks, and then use an "appropriate" method for combining the outputs of the subnetworks. Some of the expected advantages of this approach (when compared with the use of "lumped" or "monolithic" networks) are: superior performance, reduced development time and greater flexibility. For instance, if a module is removed from the network and replaced by a new module (which may perform the same task more efficiently), it should not be necessary to retrain the aggregate network.

1. Introduction.- 1.1 Classification, Prediction and Identification: an Informal Description.- 1.2 Part I: Known Sources.- 1.3 Part II: Applications.- 1.4 Part III: Unknown Sources.- 1.5 Part IV: Connections.- I Known Sources.- 2. Premonn Classification and Prediction.- 3. Generalizations of the Basic Premonn.- 4. Mathematical Analysis.- 5. System Identification by the Predictive Modular Approach.- II Applications.- 6. Implementation Issues.- 7. Classification of Visually Evoked Responses.- 8. Prediction of Short Term Electric Loads.- 9. Parameter Estimation for and Activated Sludge Process.- III Unknown Sources.- 10. Source Identification Algorithms.- 11. Convergence of Parallel Data Allocation.- 12. Convergence of Serial Data Allocation.- IV Connections.- 13. Bibliographic Remarks.- 14. Epilogue.- Appendices.- A— Mathematical Concepts.- A.1 Notation.- A.2 Probability Theory.- A.3 Sequences of Bernoulli Trials.- A.4 Markov Chains.- References.

Reihe/Serie The Springer International Series in Engineering and Computer Science ; 466
Zusatzinfo XI, 314 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Kryptologie
Naturwissenschaften Physik / Astronomie Theoretische Physik
Naturwissenschaften Physik / Astronomie Thermodynamik
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
ISBN-10 1-4613-7540-1 / 1461375401
ISBN-13 978-1-4613-7540-1 / 9781461375401
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
IT zum Anfassen für alle von 9 bis 99 – vom Navi bis Social Media

von Jens Gallenbacher

Buch | Softcover (2021)
Springer (Verlag)
CHF 41,95
Interlingua zur Gewährleistung semantischer Interoperabilität in der …

von Josef Ingenerf; Cora Drenkhahn

Buch | Softcover (2023)
Springer Fachmedien (Verlag)
CHF 46,15