Theory and Applications of Nonviscous Fluid Flows
Springer Berlin (Verlag)
978-3-642-62551-0 (ISBN)
1. Fluid Dynamic Limits of the Boltzmann Equation.- 1.1 The Boltzmann Equation.- 1.2 The Fluid Dynamic Limits.- 1.3 Comments.- 2. From Classical Continuum Theory to Euler Equations via N-S-F Equations.- 2.1 Newtonian Fluids.- 2.2 Partial Differential Equations for the Motion of Any Continuum.- 2.3 N-S-F Equations.- 2.4 Dimensionless N-S-F Equations.- 3. Short Presentation of Asymptotic Methods and Modelling.- 3.1 Method of Strained Coordinates.- 3.2 Method of Matched Asymptotic Expansions.- 3.3 Multiple Scale Method.- 3.4 Flow with Variable Viscosity: An Asymptotic Model.- 3.5 Low Mach Number Flows: Weakly Nonlinear Acoustic Waves.- 4. Various Forms of Euler Equations and Some Hydro-Aerodynamics Problems.- 4.1 Barotropic Inviscid Fluid Flow.- 4.2 Bernoulli Equation and Potential Flows.- 4.3 D'Alembert Paradox and Kutta-Joukowski-Villat Condition.- 4.4 Potential Flows and Water Waves.- 4.5 Compressible Eulerian Baroclinic Fluid Flow.- 4.6 Isochoric Fluid Flows.- 4.7 Isentropic Fluid Flow and the Steichen Equation.- 4.8 Steady Euler Equations and Stream Functions.- 5. Atmospheric Flow Equations and Lee Waves.- 5.1 Euler Equations for Atmospheric Motions.- 5.2 The Meteorological "Primitive" Kibel Equations.- 5.3 The Boussinesq Inviscid Equations.- 5.4 Isochoric Lee Waves.- 5.5 Boussinesq Lee Waves.- 6. Low Mach Number Flow and Acoustics Equations.- 6.1 Euler Incompressible Limit Equations.- 6.2 Equations of Acoustics.- 7. Turbo-Machinery Fluid Flow.- 7.1 Various Facets of an Asymptotic Theory.- 7.2 Through-Flow Model.- 7.3 Flow Analysis at the Leading/Trailing Edges of a Row.- 7.4 Complementary Remarks.- 8. Vortex Sheets and Shock Layer Phenomena.- 8.1 The Concept of Discontinuity.- 8.2 Jump Relations Associated with a Conservation Law.- 8.3 TheStructure of the Shock Layer.- 8.4 Some Properties of the Vortex Sheet.- 9. Rigorous Mathematical Results.- 9.1 Well-Posedness of Eulerian Fluid Flows.- 9.2 Existence, Regularity, and Uniqueness Results.- References.
From the reviews of the first edition:
"Researchers in fluid dynamics and applied mathematics will enjoy this book for its breadth of coverage, hands-on treatment of important ideas, many references, and historical and philosophical remarks." (MATHEMATICAL REVIEWS, 2003g)
"[...] presents a broad panorama of model problems encountered in nonviscous Newtonian fluid flows." (International Aerospace Abstracts 42/3, 2002)
"This well-organized book can be recommended to students, teachers and researchers with an interest in asymptotic methods and rigorous foundations of nonviscous fluid mechanics." (Zentralblatt MATH, 992/17, 2002)
"This book touches on a number of topics in fluid mechanics at an advanced level. ... I believe the book could be a welcome addition to the bookshelf of anyone working in theoretical fluid mechanics. It would also be a valuable supplemental text for a post-master course in fluid mechanics." (Anthony Leonard, Journal of Fluid Mechanics, Vol. 517, 2004)
Erscheint lt. Verlag | 5.11.2012 |
---|---|
Zusatzinfo | XII, 295 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 469 g |
Themenwelt | Naturwissenschaften ► Physik / Astronomie |
Technik ► Maschinenbau | |
Schlagworte | algorithm • Calculus • fluid- and aerodynamics • Fluid Dynamics • Model • Modeling • partial differential equation • Potential |
ISBN-10 | 3-642-62551-7 / 3642625517 |
ISBN-13 | 978-3-642-62551-0 / 9783642625510 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich