Hypoelliptic Laplacian and Orbital Integrals (eBook)
344 Seiten
Princeton University Press (Verlag)
978-1-4008-4057-1 (ISBN)
Jean-Michel Bismut is professor of mathematics at the Université Paris-Sud, Orsay.
Reihe/Serie | Annals of Mathematics Studies | Annals of Mathematics Studies |
---|---|
Zusatzinfo | 2 line illus. |
Verlagsort | Princeton |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
Technik | |
Schlagworte | Action functional • adjoint representation • analytic torsion • Asymptote • Atiyah–Singer index theorem • automorphism • Bianchi identity • bilinear form • Boundary value problem • Brownian motion • Casimir Operator • Change of variables • Clifford Algebra • Clifford Algebras • Clifford variables • coefficient • commutator • complexification • Computation • conjugations • Connection form • continuous function • convergence • Convexity • coordinate system • cotangent bundle • covariant derivative • de Rham cohomology • de Rham complex • Derivative • Determinant • diffeomorphism • differential equation • differential form • Differential operator • Dimension (vector space) • Dirac Operator • Direct proof • displacement function • distance function • Division by zero • dot product • Eigenvalues and Eigenvectors • elliptic Laplacian • elliptic operator • elliptic orbital integrals • Endomorphism • Equation • estimation • Euclidean space • Euclidean vector space • existential quantification • Explicit formula • Explicit formulae (L-function) • exponential function • Feynman-Kac formula • Feynman–Kac formula • fiber bundle • fixed point formulas • flat bundle • Fourier transform • Gaussian integral • Gaussian process • Gaussian type estimates • general kernels • general orbital integrals • geodesic • Geodesic flow • geodesics • Harmonic oscillator • heat equation • Heat kernel • heat kernels • heat operators • Heisenberg algebras • Hermitian matrix • hilbert space • hypoelliptic deformation • hypoelliptic heat kernel • hypoelliptic heat kernels • hypoelliptic Laplacian • hypoelliptic operator • hypoelliptic operators • hypoelliptic orbital integrals • index formulas • Index Theory • infinite dimensional orbital integrals • Integration by parts • keat kernels • Kostant • Leftschetz formula • Levi-Civita connection • Lie algebra • Lie derivative • Linear map • Littlewood-Paley decomposition • local index theory • locally symmetric space • Malliavin calculus • matrix part • model operator • nondegeneracy • orbifold • orbifolds • Orbital integral • Orbital Integrals • Orthonormal basis • Parallel Transport • parallel transport trivialization • Parameter • Pointwise • polynomial • Pontryagin Maximum Principle • Pontryagin's Maximum Principle • principal bundle • probabilistic construction • Probabilistic method • Probability • probability measure • Projection (linear algebra) • pseudo-differential operator • pseudodistances • Quantitative Estimates • quartic term • Random Variable • real vector space • refined estimates • rescaled heat kernel • resolvents • return map • Riemannian manifold • rough estimates • scalar heat kernel • scalar heat kernels • scalar hypoelliptic heat kernels • scalar hypoelliptic Laplacian • scalar hypoelliptic operator • scalar part • scientific notation • Selberg's trace formula • Self-adjoint • Semigroup • semisimple orbital integrals • smooth kernels • Smoothness • Sobolev Space • Sobolev spaces • Special case • Spinor • Square-integrable function • square root • standard elliptic heat kernel • stochastic differential equation • submanifold • Summation • Supertrace • supertraces • Support (mathematics) • Symmetric bilinear form • symmetric space • symplectic vector space • tangent bundle • Theorem • Toponogov's theorem • trace formula • unbounded operator • unbounded operators • uniform bounds • uniform estimates • Variable (mathematics) • Variational Problems • vector bundle • Vector Bundles • Vector field • Vector Space • Volume element • wave equation • wave kernel • wave operator • Witten complex |
ISBN-10 | 1-4008-4057-0 / 1400840570 |
ISBN-13 | 978-1-4008-4057-1 / 9781400840571 |
Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich