Algebra and Number Theory (eBook)
538 Seiten
John Wiley & Sons (Verlag)
978-0-470-64053-1 (ISBN)
play a central role across the field of mathematics
Algebra and number theory are two powerful branches of modern
mathematics at the forefront of current mathematical research, and
each plays an increasingly significant role in different branches
of mathematics, from geometry and topology to computing and
communications. Based on the authors' extensive experience within
the field, Algebra and Number Theory has an innovative
approach that integrates three disciplines--linear algebra,
abstract algebra, and number theory--into one comprehensive
and fluid presentation, facilitating a deeper understanding of the
topic and improving readers' retention of the main concepts.
The book begins with an introduction to the elements of set
theory. Next, the authors discuss matrices, determinants, and
elements of field theory, including preliminary information related
to integers and complex numbers. Subsequent chapters explore key
ideas relating to linear algebra such as vector spaces, linear
mapping, and bilinear forms. The book explores the development of
the main ideas of algebraic structures and concludes with
applications of algebraic ideas to number theory.
Interesting applications are provided throughout to demonstrate
the relevance of the discussed concepts. In addition, chapter
exercises allow readers to test their comprehension of the
presented material.
Algebra and Number Theory is an excellent book for
courses on linear algebra, abstract algebra, and number theory at
the upper-undergraduate level. It is also a valuable reference for
researchers working in different fields of mathematics, computer
science, and engineering as well as for individuals preparing for a
career in mathematics education.
MARTYN R. DIXON, PHD, is Professor in the Department of Mathematics at the University of Alabama, Tuscaloosa. He has authored more than sixty published journal articles on infinite group theory, formation theory and Fitting classes, wreath products, and automorphism groups. LEONID A. KURDACHENKO, PHD, is Distinguished Professor and Chair of the Department of Algebra at the Dnepropetrovsk National University (Ukraine). Dr. Kurdachenko has authored more than 150 journal articles on the topics of infinite-dimensional linear groups, infinite groups, and module theory. IGOR YA. SUBBOTIN, PHD, is Professor in the Department of Mathematics and Natural Sciences at National University (California). Dr. Subbotin is the author of more than 100 published journal articles on group theory, cybernetics, and mathematics education.
Preface ix
Chapter 1 Sets 1
1.1 Operations on Sets 1
Exercise Set 1.1 6
1.2 Set Mappings 8
Exercise Set 1.2 19
1.3 Products of Mappings 20
Exercise Set 1.3 26
1.4 Some Properties of Integers 28
Exercise Set 1.4 39
Chapter 2 Matrices and Determinants 41
2.1 Operations on Matrices 41
Exercise Set 2.1 52
2.2 Permutations of Finite Sets 54
Exercise Set 2.2 64
2.3 Determinants of Matrices 66
Exercise Set 2.3 77
2.4 Computing Determinants 79
Exercise Set 2.4 91
2.5 Properties of the Product of Matrices 93
Exercise Set 2.5 103
Chapter 3 Fields 105
3.1 Binary Algebraic Operations 105
Exercise Set 3.1 118
3.2 Basic Properties of Fields 119
Exercise Set 3.2 129
3.3 The Field of Complex Numbers 130
Exercise Set 3.3 144
Chapter 4 Vector Spaces 145
4.1 Vector Spaces 146
Exercise Set 4.1 158
4.2 Dimension 159
Exercise Set 4.2 172
4.3 The Rank of a Matrix 174
Exercise Set 4.3 181
4.4 Quotient Spaces 182
Exercise Set 4.4 186
Chapter 5 Linear Mappings 187
5.1 Linear Mappings 187
Exercise Set 5.1 199
5.2 Matrices of Linear Mappings 200
Exercise Set 5.2 207
5.3 Systems of Linear Equations 209
Exercise Set 5.3 215
5.4 Eigenvectors and Eigenvalues 217
Exercise Set 5.4 223
Chapter 6 Bilinear Forms 226
6.1 Bilinear Forms 226
Exercise Set 6.1 234
6.2 Classical Forms 235
Exercise Set 6.2 247
6.3 Symmetric Forms over R 250
Exercise Set 6.3 257
6.4 Euclidean Spaces 259
Exercise Set 6.4 269
Chapter 7 Rings 272
7.1 Rings, Subrings, and Examples 272
Exercise Set 7.1 287
7.2 Equivalence Relations 288
Exercise Set 7.2 295
7.3 Ideals and Quotient Rings 297
Exercise Set 7.3 303
7.4 Homomorphisms of Rings 303
Exercise Set 7.4 313
7.5 Rings of Polynomials and Formal Power Series 315
Exercise Set 7.5 327
7.6 Rings of Multivariable Polynomials 328
Exercise Set 7.6 336
Chapter 8 Groups 338
8.1 Groups and Subgroups 338
Exercise Set 8.1 348
8.2 Examples of Groups and Subgroups 349
Exercise Set 8.2 358
8.3 Cosets 359
Exercise Set 8.3 364
8.4 Normal Subgroups and Factor Groups 365
Exercise Set 8.4 374
8.5 Homomorphisms of Groups 375
Exercise Set 8.5 382
Chapter 9 Arithmetic Properties of Rings 384
9.1 Extending Arithmetic to Commutative Rings 384
Exercise Set 9.1 399
9.2 Euclidean Rings 400
Exercise Set 9.2 404
9.3 Irreducible Polynomials 406
Exercise Set 9.3 415
9.4 Arithmetic Functions 416
Exercise Set 9.4 429
9.5 Congruences 430
Exercise Set 9.5 446
Chapter 10 The Real Number System 448
10.1 The Natural Numbers 448
10.2 The Integers 458
10.3 The Rationals 468
10.4 The Real Numbers 477
Answers to Selected Exercises 489
Index 513
"The book is well-written and covers, with plenty of
exercises, the material needed in the three aforementioned courses,
albeit in a new order." (Zentralblatt MATH, 1
December 2012)
"However, instructors contemplating such a unified approach should
give this book serious consideration. Recommended. Upper-division
undergraduates through researchers/faulty." (Choice , 1 April 2011)
Erscheint lt. Verlag | 15.7.2011 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie | |
Technik | |
Schlagworte | Computer Science • Informatik • linear algebra • Lineare Algebra • Mathematics • Mathematik • Number Theory • Zahlentheorie |
ISBN-10 | 0-470-64053-7 / 0470640537 |
ISBN-13 | 978-0-470-64053-1 / 9780470640531 |
Haben Sie eine Frage zum Produkt? |
Größe: 19,7 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich