This continuing authoritative series deals with the chemistry, materials science, physics and technology of the rare earth elements in an integrated manner. Each chapter is a comprehensive, up-to-date, critical review of a particular segment of the field. The work offers the researcher and graduate student a complete and thorough coverage of this fascinating field. - Authoritative- Comprehensive- Up-to-date- Critical
Chapter 252 Thermal and Electronic Properties of Rare Earth Compounds at High Pressure
Y. Uwatoko*, I. Umehara†, M. Ohashi‡, T. Nakano§, G. Oomi¶||
* The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan
† Department of Physics, Faculty of Engineering, Yokohama National University, Yokohama, Japan
‡ Faculty of Environmental Design, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, Japan
§ Department of Materials Science and Technology, Faculty of Engineering, Niigata University, Ikarashi, Niigata, Japan
¶ Department of Physics, Kyushu University, Hakozaki, Fukuoka, Japan
|| Department of Education and Creation Engineering, Kurume Institute of technology, Kamitsu-machi, Kurume, Fukuoka, Japan
Abstract
Electronic properties of rare earth metals, alloys and intermetallic compounds have attracted a lot of attention not only from the viewpoint of fundamental aspects but also from the application. These materials show a wide variety of electronic and magnetic properties, such as magnetic order, superconductivity, intermediate valence, Kondo effect and so forth. In this chapter we introduce a lot of experimental studies about the effect of pressure on the thermal, structural and electronic properties of rare earth compounds, in which the electronic states are marginal due to unstable 4f electrons. We describe the present status in this research area. In section 2, the relations between crystal structure and electronic and magnetic state by using X-ray and neutron diffraction under pressure are reported. Effect of pressure on the thermal properties mainly for heavy fermions are reported in section 3. Novel pressure-induced electronic phase transitions such as the crossover in the electronic states and superconductivity are introduced for several heavy fermion materials in section 4. In the last section 5, we show miscellaneous examples which are found recently for amorphous state rare earth compounds and rare earth magnetic multilayers.
Abbreviations
α thermal expansion coefficient
αmag the magnetic contribution to α
γ electronic specific heat coefficient
εF Fermi energy
κ the compressibility
κi linear compressibilities along i-axis (i = a, b, or c)
ρ resistivity
τ wave vector
ωs angular frequency
Δ(0) superconducting gap at T = 0
Γ′ Grüneisen parameter
Δl/l linear thermal expansion
Δmag energy gap of antiferromagnetic magnon
ΘD Debye temperature
A coefficient of T2 term in resistivity
AFM antiferromagnetism
B0 bulk modulus
B0′ pressure derivative of bulk modulus
BCS Bardeen–Cooper–Schrieffer
BT the isothermal bulk modulus
C heat capacity
Cac alternating current specific heat
CEF crystalline electric field
CK concentrated Kondo
Cs heat capacity of superconductivity
CV the specific heat at constant volume
D(E) density of state at energy E
E energy
FRP fiber-reinforced plastic
FWHM full width at half maximum
g0 the degeneracy factor of ground state
g1 the degeneracy factor of exited sate
H magnetic field
reduced Planck constant or Dirac constant
HF heavy fermion
hpp high-pressure phase
HRC Rockwell hardness in C-scale
IC incommensurate
kB Boltzmann constant
lpp low-pressure phase
MPMS magnetic property measurement system
n electronic density
ND neutron diffraction
NMR nuclear magnetic resonance
P pressure
Pc critical pressure
Q wave vector
q1 propagation vector
R gas constant
SC superconductivity
T temperature
T0 a characteristic temperature
TC Curie temperature
Tc superconducting transition temperature
TF the temperature where electron becomes in Fermi liquid state
TK Kondo temperature
Tmax temperature showing resistance maximum
TN Néel temperature
TPT topological phase transition
Tsf spin fluctuation temperature
U internal energy
V volume of unit cell
V0 volume at ambient pressure
1. INTRODUCTION
The physical properties of condensed matter are dominated by interactions between particles or quasiparticles. Among them, the electron correlations are the most important interactions in determining the electronic and magnetic properties of condensed matter. In other words, the understanding of the mechanisms of electron correlations in condensed matter is one of the most basic problems in solid-state physics. High-Tc superconductivity (SC) and novel physical properties of rare earth compounds are thought to originate from strong electron correlations in f- and d-electron systems. In alloys and intermetallic compounds, including rare earth elements, many anomalous physical properties such as Kondo effect, magnetic ordering, SC, and other have been observed. These phenomena are closely connected to the electron correlations between localized 4f electrons and conduction electrons.
It has been well known that physical properties of materials on the border of magnetic instability are strongly dependent on external parameters such as external pressure, magnetic fields, and chemical composition. Novel electronic properties of rare earth compounds are due to the existence of localized 4f electrons, which generally speaking, have strong electron correlations and unstable electronic states. These properties are also expected from the anomalous pressure–temperature phase diagram of rare earth elements, in which numerous phase transitions are observed at low temperature and at high pressure. The heavy fermion (HF) compounds, which are a group of Kondo compounds that have extremely large specific heat coefficients, are typical examples having unstable electronic states, and it is well known that their physical properties are affected strongly by a change of magnetic field and external pressure.
In this chapter, we present the structural and thermal properties of rare earth compounds under high pressure in connection with their electronic and magnetic properties. Pressure is an excellent tool facilitating many types of phase transitions, including quantum phase transitions (QPTs) in condensed matter. There is a large body of research describing physical properties of condensed matter under high pressure in relationship not only to magnetic and electronic properties but also to structural properties. Because of size constrains, we confine our discussion to the present status of research in thermal and electronic aspects of physical properties of rare earth compounds, in which almost all examples are or may potentially be highly correlated compounds including rare...
Erscheint lt. Verlag | 25.11.2011 |
---|---|
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Chemie ► Anorganische Chemie |
Naturwissenschaften ► Physik / Astronomie ► Thermodynamik | |
Technik | |
ISBN-10 | 0-444-54317-1 / 0444543171 |
ISBN-13 | 978-0-444-54317-2 / 9780444543172 |
Haben Sie eine Frage zum Produkt? |
Größe: 15,7 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
Größe: 16,0 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich