Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Mathematical Logic (eBook)

eBook Download: PDF
2011 | 1. Auflage
312 Seiten
John Wiley & Sons (Verlag)
978-1-118-03069-1 (ISBN)

Lese- und Medienproben

Mathematical Logic - George Tourlakis
Systemvoraussetzungen
116,99 inkl. MwSt
(CHF 114,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
A comprehensive and user-friendly guide to the use of logic in
mathematical reasoning

Mathematical Logic presents a comprehensive introduction
to formal methods of logic and their use as a reliable tool for
deductive reasoning. With its user-friendly approach, this book
successfully equips readers with the key concepts and methods for
formulating valid mathematical arguments that can be used to
uncover truths across diverse areas of study such as mathematics,
computer science, and philosophy.

The book develops the logical tools for writing proofs by
guiding readers through both the established "Hilbert" style of
proof writing, as well as the "equational" style that is emerging
in computer science and engineering applications. Chapters have
been organized into the two topical areas of Boolean logic and
predicate logic. Techniques situated outside formal logic are
applied to illustrate and demonstrate significant facts regarding
the power and limitations of logic, such as:

* Logic can certify truths and only truths.

* Logic can certify all absolute truths (completeness theorems of
Post and Gödel).

* Logic cannot certify all "conditional" truths, such as those
that are specific to the Peano arithmetic. Therefore, logic has
some serious limitations, as shown through Gödel's
incompleteness theorem.

Numerous examples and problem sets are provided throughout the
text, further facilitating readers' understanding of the
capabilities of logic to discover mathematical truths. In addition,
an extensive appendix introduces Tarski semantics and proceeds with
detailed proofs of completeness and first incompleteness theorems,
while also providing a self-contained introduction to the theory of
computability.

With its thorough scope of coverage and accessible style,
Mathematical Logic is an ideal book for courses in
mathematics, computer science, and philosophy at the
upper-undergraduate and graduate levels. It is also a valuable
reference for researchers and practitioners who wish to learn how
to use logic in their everyday work.

GEORGE TOURLAKIS, PhD, is University Professor of Computer Science and Engineering at York University, Canada. Dr. Tourlakis has authored or coauthored numerous articles in his areas of research interest, which include calculational logic, modal logic, computability, complexity theory, and arithmetical forcing.

Preface.

Acknowledgments.

PART I: BOOLEAN LOGIC.

1. The Beginning.

1.1 Boolean Formulae.

1.2 Induction on the Complexity of WFF: Some Easy Properties of
WFF.

1.3 Inductive definitions on formulae.

1.4 Proofs and Theorems.

1.5 Additional Exercises.

2. Theorems and Metatheorems.

2.1 More Hilbertstyle Proofs.

2.2 Equational-style Proofs.

2.3 Equational Proof Layout.

2.4 More Proofs: Enriching our Toolbox.

2.5 Using Special Axioms in Equational Proofs.

2.6 The Deduction Theorem.

2.7 Additional Exercises.

3. The Interplay between Syntax and Semantics.

3.1 Soundness.

3.2 Post's Theorem.

3.3 Full Circle.

3.4 Single-Formula Leibniz.

3.5 Appendix: Resolution in Boolean Logic.

3.6 Additional Exercises.

PART II: PREDICATE LOGIC.

4. Extending Boolean Logic.

4.1 The First Order Language of Predicate Logic.

4.2 Axioms and Rules of First Order Logic.

4.3 Additional Exercises.

5. Two Equivalent Logics.

6. Generalization and Additional Leibniz Rules.

6.1 Inserting and Removing "(& #8704;x)".

6.2 Leibniz Rules that Affect Quantifier Scopes.

6.3 The Leibniz Rules "8.12".

6.4 More Useful Tools.

6.5 Inserting and Removing "(& #8707;x)".

6.6 Additional Exercises.

7. Properties of Equality.

8. First Order Semantics -- Very Naïvely.

8.1 Interpretations.

8.2 Soundness in Predicate Logic.

8.3 Additional Exercises.

Appendix A: Gödel's Theorems and Computability.

A.1 Revisiting Tarski Semantics.

A.2 Completeness.

A.3 A Brief Theory of Computability.

A.3.1 A Programming Framework for Computable Functions.

A.3.2 Primitive Recursive Functions.

A.3.3 URM Computations.

A.3.4 Semi-Computable Relations; Unsolvability.

A.4 Godel's First Incompleteness Theorem.

A.4.1 Supplement: & #248;x(x) " is first order definable in
N.

References.

Index.

"Overall, he presents the material as if he were holding a
dialogue with the reader. An advanced independent reader with a
very strong background in mathematics would find the book helpful
in learning this area of mathematics. Summing Up:
Recommended." (Choice, April 2009)

"The book would be ideas as an introduction to classical logic
for students of mathematics, computer science or philosophy.
Due to the author's clear and approachable style, it can be
recommended to a large circle of readers interested in mathematical
logic as well." (Mathematical Review, Issue 2009e)

"I give this outstanding book my highest recommendation, whilst
being grateful that excellence in the logic-book 'business' is the
very opposite of a zero-sum game: there's plenty of room at the
top." (Computing Reviews, November 5, 2008)

Erscheint lt. Verlag 1.3.2011
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Logik / Mengenlehre
Technik
Schlagworte Computer Science • Computer Science - General Interest • Informatik • Logic & Foundations • Logik • Logik u. Grundlagen der Mathematik • Mathematics • Mathematik • Mathematische Logik • Philosophical Logic • Philosophie • Philosophische Logik • Philosophy • Populäre Themen i. d. Informatik • Populäre Themen i. d. Informatik
ISBN-10 1-118-03069-9 / 1118030699
ISBN-13 978-1-118-03069-1 / 9781118030691
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 11,3 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
An Introduction to Mathematical Proofs

von Antonella Cupillari

eBook Download (2023)
Elsevier Science (Verlag)
CHF 51,70
A Romance of Many Dimensions (By a Square)

von Edwin A. Abbott

eBook Download (2022)
Cedar Lake Classics (Verlag)
CHF 2,90