Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Inference and Prediction in Large Dimensions (eBook)

eBook Download: PDF
2008
John Wiley & Sons (Verlag)
9780470724026 (ISBN)

Lese- und Medienproben

Inference and Prediction in Large Dimensions - Denis Bosq, Delphine Blanke
Systemvoraussetzungen
87,99 inkl. MwSt
(CHF 85,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book offers a predominantly theoretical coverage of statistical prediction, with some potential applications discussed, when data and/ or parameters belong to a large or infinite dimensional space. It develops the theory of statistical prediction, non-parametric estimation by adaptive projection - with applications to tests of fit and prediction, and theory of linear processes in function spaces with applications to prediction of continuous time processes.

This work is in the Wiley-Dunod Series co-published between Dunod (www.dunod.com) and John Wiley and Sons, Ltd.



Denis Bosq is a Professor at the Laboratory of Theoretical and Applied Statistics, University of Pierre & Marie Curie - Paris 6. He has over 100 published papers, 5 books, and is chief editor of the journal 'Statistical Inference for Stochastic Processes' as well as associate editor for the 'Journal of Non-Parametric Statistics'. He is a well-known specialist in the field of non-parametric statistical inference.
This book offers a predominantly theoretical coverage of statistical prediction, with some potential applications discussed, when data and/ or parameters belong to a large or infinite dimensional space. It develops the theory of statistical prediction, non-parametric estimation by adaptive projection with applications to tests of fit and prediction, and theory of linear processes in function spaces with applications to prediction of continuous time processes. This work is in the Wiley-Dunod Series co-published between Dunod (www.dunod.com) and John Wiley and Sons, Ltd.

Denis Bosq is a Professor at the Laboratory of Theoretical and Applied Statistics, University of Pierre & Marie Curie - Paris 6. He has over 100 published papers, 5 books, and is chief editor of the journal 'Statistical Inference for Stochastic Processes' as well as associate editor for the 'Journal of Non-Parametric Statistics'. He is a well-known specialist in the field of non-parametric statistical inference.

"This book provides a rigorous and thorough account of modern
mathematical statistics as applied to the classic problems of
prediction, filtering, inference with kernels, and high-dimensional
linear processes ... All in all, Large Sample Techniques in
Statistics is an excellent book that I recommend whole-heartedly."
(Journal of the American Statistical Association, 1 December 2011)

Erscheint lt. Verlag 11.3.2008
Reihe/Serie Wiley Series in Probability and Statistics
Wiley Series in Probability and Statistics
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Schlagworte Accurate • alternative statistical treatment • biometrics • Biometrie • circumstances • Coverage • dimensional • instances • Large • many • often • Prediction • Predominantly • problematic • Regression Analysis • Regressionsanalyse • Spaces • Statistical • Statistical Research • Statistics • Statistik • Theoretical
ISBN-13 9780470724026 / 9780470724026
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich