Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Simulation and Monte Carlo (eBook)

With Applications in Finance and MCMC

(Autor)

eBook Download: PDF
2007 | 1. Auflage
348 Seiten
John Wiley & Sons (Verlag)
978-0-470-06134-3 (ISBN)

Lese- und Medienproben

Simulation and Monte Carlo - J. S. Dagpunar
Systemvoraussetzungen
51,99 inkl. MwSt
(CHF 49,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Simulation and Monte Carlo is aimed at students studying for
degrees in Mathematics, Statistics, Financial Mathematics,
Operational Research, Computer Science, and allied subjects, who
wish an up-to-date account of the theory and practice of
Simulation. Its distinguishing features are in-depth accounts of
the theory of Simulation, including the important topic of variance
reduction techniques, together with illustrative applications in
Financial Mathematics, Markov chain Monte Carlo, and Discrete Event
Simulation.

Each chapter contains a good selection of exercises and
solutions with an accompanying appendix comprising a Maple
worksheet containing simulation procedures. The worksheets can also
be downloaded from the web site supporting the book. This
encourages readers to adopt a hands-on approach in the effective
design of simulation experiments.

Arising from a course taught at Edinburgh University over
several years, the book will also appeal to practitioners working
in the finance industry, statistics and operations research.

J. S. Dagpunar is the author of Simulation and Monte Carlo: With Applications in Finance and MCMC, published by Wiley.

Preface.

Glossary.

1 Introduction to simulation and Monte Carlo.

1.1 Evaluating a definite integral.

1.2 Monte Carlo is integral estimation.

1.3 An example.

1.4 A simulation using Maple.

1.5 Problems.

2 Uniform random numbers.

2.1 Linear congruential generators.

2.2 Theoretical tests for random numbers.

2.3 Shuffled generator.

2.4 Empirical tests.

2.5 Combinations of generators.

2.6 The seed(s) in a random number generator.

2.7 Problems.

3 General methods for generating random variates.

3.1 Inversion of the cumulative distribution function.

3.2 Envelope rejection.

3.3 Ratio of uniforms method.

3.4 Adaptive rejection sampling.

3.5 Problems.

4 Generation of variates from standard distributions.

4.1 Standard normal distribution.

4.2 Lognormal distribution.

4.3 Bivariate normal density.

4.4 Gamma distribution.

4.5 Beta distribution.

4.6 Chi-squared distribution.

4.7 Student's t distribution.

4.8 Generalized inverse Gaussian distribution.

4.9 Poisson distribution.

4.10 Binomial distribution.

4.11 Negative binomial distribution.

4.12 Problems.

5 Variance reduction.

5.1 Antithetic variates.

5.2 Importance sampling.

5.3 Stratified sampling.

5.4 Control variates.

5.5 Conditional Monte Carlo.

5.6 Problems.

6 Simulation and finance.

6.1 Brownian motion.

6.2 Asset price movements.

6.3 Pricing simple derivatives and options.

6.4 Asian options.

6.5 Basket options.

6.6 Stochastic volatility.

6.7 Problems.

7 Discrete event simulation.

7.1 Poisson process.

7.2 Time-dependent Poisson process.

7.3 Poisson processes in the plane.

7.4 Markov chains.

7.5 Regenerative analysis.

7.6 Simulating a G/G/1 queueing system using the three-phase
method.

7.7 Simulating a hospital ward.

7.8 Problems.

8 Markov chain Monte Carlo.

8.1 Bayesian statistics.

8.2 Markov chains and the Metropolis-Hastings (MH)
algorithm.

8.3 Reliability inference using an independence sampler.

8.4 Single component Metropolis-Hastings and Gibbs
sampling.

8.5 Other aspects of Gibbs sampling.

8.6 Problems.

9 Solutions.

9.1 Solutions 1.

9.2 Solutions 2.

9.3 Solutions 3.

9.4 Solutions 4.

9.5 Solutions 5.

9.6 Solutions 6.

9.7 Solutions 7.

9.8 Solutions 8.

Appendix 1: Solutions to problems in Chapter 1.

Appendix 2: Random Number Generators.

Appendix 3: Computations of acceptance probabilities.

Appendix 4: Random variate generators (standard
distributions).

Appendix 5: Variance Reduction.

Appendix 6: Simulation and Finance.

Appendix 7: Discrete event simulation.

Appendix 8: Markov chain Monte Carlo.

References.

Index.

?This book would be immensely useful for any practitioner seeking
to learn more about this field, as well as for lecturers seeking a
reliable and informative text.? ( Significance, September
2009)

"The book does a nice job of discussing, developing, and
presenting the mathematical aspects of random processes, random
number generation, and Markov chain Monte Carlo (MCMC) methods. I
particularly like the notation used and the depth of proofs
offered; they are technically correct, well organized, and nicely
presented." (Journal of the American Statistical
Association, June 2008)

?Dagpunar presents a textbook based on 20-hour courses he
has taught for advanced students of mathematics and students of
financial mathematics.? (SciTech Book Reviews, June
2007)

"?excellent for students and practitioners who don't have
previous experience with simulation methods?a great contribution."
(MAA Reviews, April 5, 2007)

Erscheint lt. Verlag 4.4.2007
Reihe/Serie Wiley Series in Probability and Statistics
Wiley Series in Probability and Statistics
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Schlagworte Angewandte Wahrscheinlichkeitsrechnung u. Statistik • Applied Probability & Statistics • Computational & Graphical Statistics • Rechnergestützte u. graphische Statistik • Rechnergestützte u. graphische Statistik • Simulation • Statistics • Statistik • Technische Statistik
ISBN-10 0-470-06134-0 / 0470061340
ISBN-13 978-0-470-06134-3 / 9780470061343
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 9,6 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich