Simulation and Monte Carlo (eBook)
John Wiley & Sons (Verlag)
978-0-470-06134-3 (ISBN)
J. S. Dagpunar is the author of Simulation and Monte Carlo: With Applications in Finance and MCMC, published by Wiley.
Preface.
Glossary.
1 Introduction to simulation and Monte Carlo.
1.1 Evaluating a definite integral.
1.2 Monte Carlo is integral estimation.
1.3 An example.
1.4 A simulation using Maple.
1.5 Problems.
2 Uniform random numbers.
2.1 Linear congruential generators.
2.2 Theoretical tests for random numbers.
2.3 Shuffled generator.
2.4 Empirical tests.
2.5 Combinations of generators.
2.6 The seed(s) in a random number generator.
2.7 Problems.
3 General methods for generating random variates.
3.1 Inversion of the cumulative distribution function.
3.2 Envelope rejection.
3.3 Ratio of uniforms method.
3.4 Adaptive rejection sampling.
3.5 Problems.
4 Generation of variates from standard distributions.
4.1 Standard normal distribution.
4.2 Lognormal distribution.
4.3 Bivariate normal density.
4.4 Gamma distribution.
4.5 Beta distribution.
4.6 Chi-squared distribution.
4.7 Student's t distribution.
4.8 Generalized inverse Gaussian distribution.
4.9 Poisson distribution.
4.10 Binomial distribution.
4.11 Negative binomial distribution.
4.12 Problems.
5 Variance reduction.
5.1 Antithetic variates.
5.2 Importance sampling.
5.3 Stratified sampling.
5.4 Control variates.
5.5 Conditional Monte Carlo.
5.6 Problems.
6 Simulation and finance.
6.1 Brownian motion.
6.2 Asset price movements.
6.3 Pricing simple derivatives and options.
6.4 Asian options.
6.5 Basket options.
6.6 Stochastic volatility.
6.7 Problems.
7 Discrete event simulation.
7.1 Poisson process.
7.2 Time-dependent Poisson process.
7.3 Poisson processes in the plane.
7.4 Markov chains.
7.5 Regenerative analysis.
7.6 Simulating a G/G/1 queueing system using the three-phase
method.
7.7 Simulating a hospital ward.
7.8 Problems.
8 Markov chain Monte Carlo.
8.1 Bayesian statistics.
8.2 Markov chains and the Metropolis-Hastings (MH)
algorithm.
8.3 Reliability inference using an independence sampler.
8.4 Single component Metropolis-Hastings and Gibbs
sampling.
8.5 Other aspects of Gibbs sampling.
8.6 Problems.
9 Solutions.
9.1 Solutions 1.
9.2 Solutions 2.
9.3 Solutions 3.
9.4 Solutions 4.
9.5 Solutions 5.
9.6 Solutions 6.
9.7 Solutions 7.
9.8 Solutions 8.
Appendix 1: Solutions to problems in Chapter 1.
Appendix 2: Random Number Generators.
Appendix 3: Computations of acceptance probabilities.
Appendix 4: Random variate generators (standard
distributions).
Appendix 5: Variance Reduction.
Appendix 6: Simulation and Finance.
Appendix 7: Discrete event simulation.
Appendix 8: Markov chain Monte Carlo.
References.
Index.
?This book would be immensely useful for any practitioner seeking
to learn more about this field, as well as for lecturers seeking a
reliable and informative text.? ( Significance, September
2009)
"The book does a nice job of discussing, developing, and
presenting the mathematical aspects of random processes, random
number generation, and Markov chain Monte Carlo (MCMC) methods. I
particularly like the notation used and the depth of proofs
offered; they are technically correct, well organized, and nicely
presented." (Journal of the American Statistical
Association, June 2008)
?Dagpunar presents a textbook based on 20-hour courses he
has taught for advanced students of mathematics and students of
financial mathematics.? (SciTech Book Reviews, June
2007)
"?excellent for students and practitioners who don't have
previous experience with simulation methods?a great contribution."
(MAA Reviews, April 5, 2007)
Erscheint lt. Verlag | 4.4.2007 |
---|---|
Reihe/Serie | Wiley Series in Probability and Statistics |
Wiley Series in Probability and Statistics | |
Wiley Series in Probability and Statistics | |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Technik | |
Schlagworte | Account • Angewandte Wahrscheinlichkeitsrechnung u. Statistik • Applications • Applied Probability & Statistics • Carlo • Computational & Graphical Statistics • degrees • distinguishing • Financial • important • indepth accounts • Mathematics • Monte • Practice • Rechnergestützte u. graphische Statistik • Rechnergestützte u. graphische Statistik • Reduction Techniques • Simulation • Statistics • Statistik • students • Technische Statistik • theory • topic • uptodate • Variance |
ISBN-10 | 0-470-06134-0 / 0470061340 |
ISBN-13 | 978-0-470-06134-3 / 9780470061343 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |

Größe: 9,6 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich