Structural Equation Modeling (eBook)
458 Seiten
John Wiley & Sons (Verlag)
978-0-470-02424-9 (ISBN)
the year*** Structural equation modeling (SEM) is a powerful multivariate
method allowing the evaluation of a series of simultaneous
hypotheses about the impacts of latent and manifest variables on
other variables, taking measurement errors into account. As SEMs
have grown in popularity in recent years, new models and
statistical methods have been developed for more accurate analysis
of more complex data. A Bayesian approach to SEMs allows the use of
prior information resulting in improved parameter estimates, latent
variable estimates, and statistics for model comparison, as well as
offering more reliable results for smaller samples.
Structural Equation Modeling introduces the Bayesian
approach to SEMs, including the selection of prior distributions
and data augmentation, and offers an overview of the
subject's recent advances.
* Demonstrates how to utilize powerful statistical computing
tools, including the Gibbs sampler, the Metropolis-Hasting
algorithm, bridge sampling and path sampling to obtain the Bayesian
results.
* Discusses the Bayes factor and Deviance Information Criterion
(DIC) for model comparison.
* Includes coverage of complex models, including SEMs with
ordered categorical variables, and dichotomous variables, nonlinear
SEMs, two-level SEMs, multisample SEMs, mixtures of SEMs, SEMs with
missing data, SEMs with variables from an exponential family of
distributions, and some of their combinations.
* Illustrates the methodology through simulation studies and
examples with real data from business management, education,
psychology, public health and sociology.
* Demonstrates the application of the freely available software
WinBUGS via a supplementary website featuring computer code and
data sets.
Structural Equation Modeling: A Bayesian Approach is a
multi-disciplinary text ideal for researchers and students in many
areas, including: statistics, biostatistics, business, education,
medicine, psychology, public health and social science.
Sik-Yum Lee is a professor of statistics at the Chinese University of Hong Kong. He earned his Ph.D. in biostatistics at the University of California, Los Angeles, USA. He received a distinguished service award from the International Chinese Statistical Association, is a former president of the Hong Kong Statistical Society, and is an elected member of the International Statistical Institute and a Fellow of the American Statistical Association. He serves as Associate Editor for Psychometrika and Computational Statistics & Data Analysis, and as a member of the Editorial Board of British Journal of Mathematical and Statistical Psychology, Structural Equation Modeling, Handbook of Computing and Statistics with Applications and Chinese Journal of Medicine. his research interests are in structural equation models, latent variable models, Bayesian methods and statistical diagnostics. he is editor of Handbook of Latent Variable and Related Models and author of over 140 papers.
About the Author.
Preface.
Chapter 1. Introduction.
Chapter 2. Some Basic Structural Equation Models.
Chapter 3. Covariance Structure Analysis.
Chapter 4. Bayesian Estimation of Structural Equation
Models.
Chapter 5. Model Comparison and Model Checking.
Chapter 6. Structural Equation Models with Continuous and
Ordered Categorical Variables.
Chapter 7. Structural Equation Models with Dichotomous
Variables.
Chapter 8. Nonlinear Structural Equation Models.
Chapter 9. Two-level Nonlinear Structural Equation Models.
Chapter 10. Multisample Analysis of Structural Equation
Models.
Chapter 11. Finite Mixtures in Structural Equation Models.
Chapter 12. Structural Equation Models with Missing Data.
Chapter 13. Structural Equation Models with Exponential Family
of Distributions.
Chapter 14. Conclusion.
Index.
"This book is a welcome addition to any library and should be a valuable resource for research and teaching." (Technometrics, August 2008)
Erscheint lt. Verlag | 4.4.2007 |
---|---|
Reihe/Serie | Wiley Series in Probability and Statistics | Wiley Series in Probability and Statistics |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Technik | |
Schlagworte | Angew. Wahrscheinlichkeitsrechn. u. Statistik / Modelle • Applied Probability & Statistics - Models • Bayesian analysis • Bayessches Verfahren • Bayes-Verfahren • Psychological Methods, Research & Statistics • Psychologie • Psychologische Methoden, Forschung u. Statistik • Psychology • Statistics • Statistik |
ISBN-10 | 0-470-02424-0 / 0470024240 |
ISBN-13 | 978-0-470-02424-9 / 9780470024249 |
Haben Sie eine Frage zum Produkt? |
Größe: 10,5 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich