Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Near-Field Characterization of Micro/Nano-Scaled Fluid Flows (eBook)

(Autor)

eBook Download: PDF
2011 | 2011
VIII, 156 Seiten
Springer Berlin (Verlag)
978-3-642-20426-5 (ISBN)

Lese- und Medienproben

Near-Field Characterization of Micro/Nano-Scaled Fluid Flows - Kenneth D Kihm
Systemvoraussetzungen
96,29 inkl. MwSt
(CHF 93,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The near-field region within an order of 100 nm from the solid interface is an exciting and crucial arena where many important multiscale transport phenomena are physically characterized, such as flow mixing and drag, heat and mass transfer, near-wall behavior of nanoparticles, binding of bio-molecules, crystallization, surface deposition processes, just naming a few. This monograph presents a number of label-free experimental techniques developed and tested for near-field fluid flow characterization. Namely, these include Total Internal Reflection Microscopy (TIRM), Optical Serial Sectioning Microscopy (OSSM), Surface Plasmon Resonance Microscopy (SPRM), Interference Reflection Contrast Microscopy (IRCM), Thermal Near-Field Anemometry, Scanning Thermal Microscopy (STM), and Micro-Cantilever Near-Field Thermometry. Presentation on each of these is laid out for the working principle, how to implement the system, and its example applications, to promote the readers understanding and knowledge of the specific technique that can be applied for their own research interests.



The near-field - the region within 100 nm from a solid interface - is an exciting arena in which several important multi-scale transport phenomena are physically characterized, such as flow mixing and drag, heat and mass transfer, near-wall behavior of nanoparticles, the binding of bio-molecules, crystallization, and surface deposition processes, just to name a few. This book presents a number of microscopicimaging techniques that were implemented and tested for near-field fluidic characterizations. These methods include Total Internal Reflection Microscopy (TIRM), Optical Serial Sectioning Microscopy (OSSM), Confocal Laser Scanning Microscopy (CLSM), Surface Plasmon Resonance Microscopy (SPRM), and Reflection Interference Contrast Microscopy (RICM). The basic principles, specifics of implementation, and example applications of each method are presented in order to promote the reader's understanding of the techniques, so that these may be applied to their own research interests.

The near-field – the region within 100 nm from a solid interface - is an exciting arena in which several important multi-scale transport phenomena are physically characterized, such as flow mixing and drag, heat and mass transfer, near-wall behavior of nanoparticles, the binding of bio-molecules, crystallization, and surface deposition processes, just to name a few. This book presents a number of microscopicimaging techniques that were implemented and tested for near-field fluidic characterizations. These methods include Total Internal Reflection Microscopy (TIRM), Optical Serial Sectioning Microscopy (OSSM), Confocal Laser Scanning Microscopy (CLSM), Surface Plasmon Resonance Microscopy (SPRM), and Reflection Interference Contrast Microscopy (RICM). The basic principles, specifics of implementation, and example applications of each method are presented in order to promote the reader’s understanding of the techniques, so that these may be applied to their own research interests.

Preface1.         Introduction1.1       Definitions of near-field1.1.1        Evanescent wave penetration depth1.1.3    Photon penetration skin-depth into metal1.1.4    Penetration depth of no-slip boundary conditions1.1.5    Equilibrium height (hm) for small particles under near-field forces 1.2          Synopsis 2.         Total Internal Reflection Microscopy (TIRM)2.1       Principles and configuration of TIRM2.2       Ratiometric TIRM imaging analysis 2. 3      Near-field applications of TIRM2.3.1    Near-wall hindered Brownian motion of nanoparticles2.3.2    Slip-flows in the near-field2.3.3    Cytoplasmic viscosity and intracellular vesicle sizes 3.         Optical Serial Sectioning Microscopy (OSSM)3.1       Point spread functions (PSFs) under aberration-free design conditions3.2       Point spread functions (PSFs) under off-design conditions3.3       Principles of OSSM3.4       Near-field applications of OSSM3.4.1    Three-dimensional particle tracking velocimetry (PTV)3.4.2    Near-wall thermometry3.4.3    Near-field mixture concentration measurements 4.         Confocal Laser Scanning Microscopy (CLSM) 4.1       Principles of confocal imaging4.2       Microscopic imaging resolutions4.3       Confocal microscopic imaging resolutions 4.4       Optical slicing thickness of confocal microscopy4.5       Confocal laser scanning microscopic particle imaging velocimetry (CLSM-PIV) system4.6       Near-field applications of CLSM-PIV4.6.1    Poiseuille flows in a microtube 4.6.2    Microscale rotating Couette flows4.6.3    Moving bubbles in a microchannel 5.         Surface Plasmon Resonance Microscopy (SPRM)5.1       Surface plasmon polaritons (SPPs)5.2       Dispersion of SPPs5.3.      Kretschmann’s three-layer configuration5.4       Surface plasmon resonance (SPR) reflectance5.5       Surface plasmon resonance microscopy (SPRM) imaging systems5.6       Selection of a prism for SPRM5.7       SPR reflectance imaging resolution5.8       Near-field applications of SPRM5.8.1    History and uses of SPRM5.8.2    Label-free mapping of microfluidic mixing fields5.8.3    Near-field mapping of salinity diffusion5.8.4    Dynamic monitoring of nanoparticle concentration profiles5.8.5    Unveiling the fingerprints of nanocrystalline self-assembly5.8.6    Near-wall thermometry 6.         Reflection Interference Contrast Microscopy (RICM)6.1       Interference of plane waves6.2       Principles and practical issues of RICM6.3       Near-field applications of RICM6.3.1    Thin-film thickness measurements6.3.2    Electrohydrodynamic (EHD) control of thin liquid film6.3.3    Dynamic fingerprinting of live-cell focal contacts References1.         Introduction1.1       Definitions of near-field1.1.1        Evanescent wave penetration depth1.1.3    Photon penetration skin-depth into metal1.1.4    Penetration depth of no-slip boundary conditions1.1.5    Equilibrium height (hm) for small particles under near-field forces 1.2          Synopsis 2.         Total Internal Reflection Microscopy (TIRM)2.1       Principles and configuration of TIRM2.2       Ratiometric TIRM imaging analysis 2. 3      Near-field applications of TIRM2.3.1    Near-wall hindered Brownian motion of nanoparticles2.3.2    Slip-flows in the near-field2.3.3    Cytoplasmic viscosity and intracellular vesicle sizes 3.         Optical Serial Sectioning Microscopy (OSSM)3.1       Point spread functions (PSFs) under aberration-free design conditions3.2       Point spread functions (PSFs) under off-design conditions3.3       Principles of OSSM3.4       Near-field applications of OSSM3.4.1    Three-dimensional particle tracking velocimetry (PTV)3.4.2    Near-wall thermometry3.4.3    Near-field mixture concentration measurements 4.         Confocal Laser Scanning Microscopy (CLSM) 4.1       Principles of confocal imaging4.2       Microscopic imaging resolutions4.3       Confocal microscopic imaging resolutions 4.4       Optical slicing thickness of confocal microscopy4.5       Confocal laser scanning microscopic particle imaging velocimetry (CLSM-PIV) system4.6       Near-field applications of CLSM-PIV4.6.1    Poiseuille flows in a microtube 4.6.2    Microscale rotating Couette flows4.6.3    Moving bubbles in a microchannel 5.         Surface Plasmon Resonance Microscopy (SPRM)5.1       Surface plasmon polaritons (SPPs)5.2       Dispersion of SPPs5.3.      Kretschmann’s three-layer configuration5.4       Surface plasmon resonance (SPR) reflectance5.5       Surface plasmon resonance microscopy (SPRM) imaging systems5.6       Selection of a prism for SPRM5.7       SPR reflectance imaging resolution5.8       Near-field applications of SPRM5.8.1    History and uses of SPRM5.8.2    Label-free mapping of microfluidic mixing fields5.8.3    Near-field mapping of salinity diffusion5.8.4    Dynamic monitoring of nanoparticle concentration profiles5.8.5    Unveiling the fingerprints of nanocrystalline self-assembly5.8.6    Near-wall thermometry 6.         Reflection Interference Contrast Microscopy (RICM)6.1       Interference of plane waves6.2       Principles and practical issues of RICM6.3       Near-field applications of RICM6.3.1    Thin-film thickness measurements6.3.2    Electrohydrodynamic (EHD) control of thin liquid film6.3.3    Dynamic fingerprinting of live-cell focal contacts References3.1       Point spread functions (PSFs) under aberration-free design conditions3.2       Point spread functions (PSFs) under off-design conditions3.3       Principles of OSSM3.4       Near-field applications of OSSM3.4.1    Three-dimensional particle tracking velocimetry (PTV)3.4.2    Near-wall thermometry3.4.3    Near-field mixture concentration measurements 4.         Confocal Laser Scanning Microscopy (CLSM) 4.1       Principles of confocal imaging4.2       Microscopic imaging resolutions4.3       Confocal microscopic imaging resolutions 4.4       Optical slicing thickness of confocal microscopy4.5       Confocal laser scanning microscopic particle imaging velocimetry (CLSM-PIV) system4.6       Near-field applications of CLSM-PIV4.6.1    Poiseuille flows in a microtube 4.6.2    Microscale rotating Couette flows4.6.3    Moving bubbles in a microchannel 5.         Surface Plasmon Resonance Microscopy (SPRM)5.1       Surface plasmon polaritons (SPPs)5.2       Dispersion of SPPs5.3.      Kretschmann’s three-layer configuration5.4       Surface plasmon resonance (SPR) reflectance5.5       Surface plasmon resonance microscopy (SPRM) imaging systems5.6       Selection of a prism for SPRM5.7       SPR reflectance imaging resolution5.8       Near-field applications of SPRM5.8.1    History and uses of SPRM5.8.2    Label-free mapping of microfluidic mixing fields5.8.3    Near-field mapping of salinity diffusion5.8.4    Dynamic monitoring of nanoparticle concentration profiles5.8.5    Unveiling the fingerprints of nanocrystalline self-assembly5.8.6    Near-wall thermometry 6.         Reflection Interference Contrast Microscopy (RICM)6.1       Interference of plane waves6.2       Principles and practical issues of RICM6.3       Near-field applications of RICM6.3.1    Thin-film thickness measurements6.3.2    Electrohydrodynamic (EHD) control of thin liquid film6.3.3    Dynamic fingerprinting of live-cell focal contacts References4.2       Microscopic imaging resolutions4.3       Confocal microscopic imaging resolutions 4.4       Optical slicing thickness of confocal microscopy4.5       Confocal laser scanning microscopic particle imaging velocimetry (CLSM-PIV) system4.6       Near-field applications of CLSM-PIV4.6.1    Poiseuille flows in a microtube 4.6.2    Microscale rotating Couette flows4.6.3    Moving bubbles in a microchannel 5.         Surface Plasmon Resonance Microscopy (SPRM)5.1       Surface plasmon polaritons (SPPs)5.2       Dispersion of SPPs5.3.      Kretschmann’s three-layer configuration5.4       Surface plasmon resonance (SPR) reflectance5.5       Surface plasmon resonance microscopy (SPRM) imaging systems5.6       Selection of a prism for SPRM5.7       SPR reflectance imaging resolution5.8       Near-field applications of SPRM5.8.1    History and uses of SPRM5.8.2    Label-free mapping of microfluidic mixing fields5.8.3    Near-field mapping of salinity diffusion5.8.4    Dynamic monitoring of nanoparticle concentration profiles5.8.5    Unveiling the fingerprints of nanocrystalline self-assembly5.8.6    Near-wall thermometry 6.         Reflection Interference Contrast Microscopy (RICM)6.1       Interference of plane waves6.2       Principles and practical issues of RICM6.3       Near-field applications of RICM6.3.1    Thin-film thickness measurements6.3.2    Electrohydrodynamic (EHD) control of thin liquid film6.3.3    Dynamic fingerprinting of live-cell focal contacts References5.5       Surface plasmon resonance microscopy (SPRM) imaging systems5.6       Selection of a prism for SPRM5.7       SPR reflectance imaging resolution5.8       Near-field applications of SPRM5.8.1    History and uses of SPRM5.8.2    Label-free mapping of microfluidic mixing fields5.8.3    Near-field mapping of salinity diffusion5.8.4    Dynamic monitoring of nanoparticle concentration profiles5.8.5    Unveiling the fingerprints of nanocrystalline self-assembly5.8.6    Near-wall thermometry 6.         Reflection Interference Contrast Microscopy (RICM)6.1       Interference of plane waves6.2       Principles and practical issues of RICM6.3       Near-field applications of RICM6.3.1    Thin-film thickness measurements6.3.2    Electrohydrodynamic (EHD) control of thin liquid film6.3.3    Dynamic fingerprinting of live-cell focal contacts References6.3       Near-field applications of RICM6.3.1    Thin-film thickness measurements6.3.2    Electrohydrodynamic (EHD) control of thin liquid film6.3.3    Dynamic fingerprinting of live-cell focal contacts References

Erscheint lt. Verlag 5.5.2011
Reihe/Serie Experimental Fluid Mechanics
Experimental Fluid Mechanics
Zusatzinfo VIII, 156 p.
Verlagsort Berlin
Sprache englisch
Themenwelt Technik Maschinenbau
Schlagworte fluid- and aerodynamics • Fluid-Solid-Interface • Interference Reflection Contrast Microscopy (IRCM) • Micro-Cantilever Near-Field Thermometry • Optical Serial Sectioning Microscopy (OSSM) • Scanning Thermal Microscopy • Surface Plasmon Resonance Microscopy (SPRM) • Thermal Near-Field Anemometry • Total Internal Reflection Microscopy (TIRM)
ISBN-10 3-642-20426-0 / 3642204260
ISBN-13 978-3-642-20426-5 / 9783642204265
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich