Bio-Medical CMOS ICs (eBook)
X, 526 Seiten
Springer US (Verlag)
978-1-4419-6597-4 (ISBN)
This book is based on a graduate course entitled, Ubiquitous Healthcare Circuits and Systems, that was given by one of the editors at his university. It includes an introduction and overview to the field of biomedical ICs and provides information on the current trends in research. The material focuses on the design of biomedical ICs rather than focusing on how to use prepared ICs.
Preface 5
Contents 7
Contributors 9
1 Introduction to Bio-Medical CMOS IC 11
1.1 Introduction to Bio-Medical CMOSIC 11
1.2 Architecture of Sensor Systems with Bio-medical CMOS IC 13
1.3 Applications and Future Trends 16
1.4 Organization of the Book 18
References 19
Part I Vital Signal Sensing and Processing 20
2 Introduction to Bioelectricity 21
2.1 Introduction 21
2.2 Electrical Properties of the Human body 22
2.2.1 Cell Membrane 22
2.2.2 Membrane Potential 23
2.2.3 Equivalent Circuit Model for the Plasma Membrane 25
2.2.4 Graded Response of Membrane Potential 26
2.2.5 Action Potential 28
2.2.6 Synaptic Transmission 29
2.3 Equivalent Circuit Model of Tissues and Organs 31
2.4 Biomedical Devices 32
2.4.1 Electrocardiography 32
2.4.2 Electroencephalography 33
2.4.3 Electromyography 35
2.5 Current Research Trends in Biomedical Electrical Instruments 36
References 37
3 Biomedical Electrodes For Biopotential Monitoring and Electrostimulation 38
3.1 Introduction 38
3.2 Electrical Properties of Electrode-Skin Interface 41
3.2.1 The Electrode-Electrolyte Interface 41
3.2.1.1 The Electrode-Electrolyte Potential 41
3.2.1.2 The Electrode-Electrolyte Impedance 44
3.2.1.3 Complex Impedance Plot 46
3.2.1.4 Bode Plot 47
3.2.1.5 Polarization 49
3.2.1.6 Transient Response and Tissue Damage 51
3.2.1.7 Limit Voltages and Currents of Linearity 56
3.2.1.8 Electrode Metals 58
3.2.2 The Skin 61
3.2.2.1 Structure of the Skin 61
3.2.2.2 Electrical Properties of the Skin 62
3.2.2.3 The Skin's Parallel Capacitance, CSP 64
3.2.2.4 The Skin's Parallel Resistance, RSP 64
3.3 Electrode Design 73
3.3.1 External Biosignal Monitoring Electrodes 73
3.3.1.1 Historical Background 73
3.4 Modern Disposable Electrodes 78
3.5 Solid Conductive Adhesive Electrodes 81
3.6 Wearable Electrodes for Personalized Health 83
3.6.1 External Electrostimulation Electrodes 85
3.6.1.1 Historical Background 85
3.6.1.2 Current Density Considerations 89
3.6.1.3 Modern Electrode Designs 91
3.7 Implant Electrodes 98
3.7.1 Historical Background 99
3.7.2 Some Modern Electrode Designs 103
3.7.3 Microelectrodes 108
3.8 Electrode Standards 114
3.8.1 Standards for Biosignal Monitoring Electrodes 114
3.8.1.1 Standards for Disposable ECG electrodes. ANSI/AAMI EC 12 (2000) 114
3.8.2 Standards for Stimulation Electrodes 120
3.8.2.1 Standards for Automatic External Defibrillators and Remote-Control Defibrillators. ANSI/AAMI DF 80 (2003) 120
3.8.2.2 Standards for Electrosurgical Devices. ANSI/AAMI HF 18 (2001) 122
3.9 Summary 124
References 125
4 Readout Circuits 132
4.1 Introduction 132
4.2 Biopotential Acquisition 133
4.2.1 Biopotential Signals 133
4.2.2 Biopotential Electrodes 134
4.2.3 Interference Theory 136
4.2.4 Noise Considerations 138
4.3 How Application Affects the Choice of Instrumentation Amplifier Topology 139
4.4 Power Efficient Instrumentation Amplifier Topologies for Biopotential Signal Extraction 142
4.4.1 Limitations of Existing Off-the-shelf Instrumentation Amplifier Topologies 142
4.4.2 Instrumentation Amplifiers Utilizing Pseudo Resistors 144
4.4.3 Introduction to Chopper Modulation 146
4.4.4 Chopper Modulating Amplifiers for Biopotential Signal Extraction 149
4.4.5 Summary and Comparison of Topologies 151
4.5 Current Mode Instrumentation Amplifiers 154
4.5.1 Open-Loop Current Mode Instrumentation Amplifiers 154
4.5.2 Closed-Loop Current Mode Instrumentation Amplifiers (Current Balancing/Feedback Instrumentation Amplifiers) 155
4.5.3 Chopper Modulated Current Balancing Instrumentation Amplifiers 157
4.6 Examples of ICs for Biopotential Acquisition 158
4.7 Conclusion 160
References 160
5 Low-Power ADCs for Bio-Medical Applications 163
5.1 ADC Specifications 164
5.1.1 Ideal ADC Specifications 164
5.1.2 Practical ADC Specifications 165
5.1.3 ADC Implementation Issues 167
5.2 Charge-Sharing Successive Approximation ADCs 167
5.2.1 Basic Operation Principle 169
5.2.1.1 Input Sampling 169
5.2.1.2 Successive Approximation, MSB 170
5.2.1.3 Successive Approximation, MSB-1 171
5.2.1.4 Successive Approximation, Remaining Bits 171
5.2.1.5 First Block Diagram 172
5.2.2 Asynchronous Operation 173
5.2.3 Binary Scaled Capacitor Array 174
5.2.4 Comparator Noise 175
5.2.4.1 Comparator Offset 177
5.2.5 Implementation 177
5.3 Comparator-Based Asynchronous Binary Search ADCs 178
5.3.1 Operating Principle 179
5.3.2 Implemented Two-Step 1-b Coarse 6-b Fine Architecture 181
5.3.2.1 Clock Generation and A/D-Converter Timing 182
5.3.2.2 Dynamic Comparator with Embedded Threshold and Encoding 182
5.3.2.3 Passive Track-and-Hold 184
5.3.2.4 Feedback D/A Converter 186
5.3.2.5 Calibration 187
5.3.2.6 Power Breakdown 188
5.3.3 Experimental Results 188
5.3.3.1 Layout Implementation 188
5.3.3.2 Measurement Setup 190
5.3.3.3 Measurement Results 190
5.3.3.4 Sensitivity to Environmental Parameters 193
5.3.3.5 Energy Efficiency 193
5.3.4 Summary 195
5.4 Conclusions 195
References 195
6 Low Power Bio-Medical DSP 197
6.1 Introduction 197
6.2 ECG Signal Processor Design 198
6.2.1 Algorithm Overview 198
6.2.2 Hardware Implementation 199
6.3 Pre Processing 200
6.3.1 Filtering 201
6.3.2 Feature Extraction 201
6.3.3 ECG Skeleton 204
6.3.4 Segmentation Memory 208
6.4 Classification Processing 208
6.4.1 ECG Classification Algorithm 208
6.4.2 Micro Architecture of RISC 209
6.5 Post-processor 212
6.5.1 Huffman Coding 212
6.5.2 AES-128 214
6.6 Low Energy Techniques 215
6.6.1 Heterogeneous Processor Integration 215
6.6.2 Low Supply Voltage Operation 215
6.6.3 Segmentation-Based Pipelined Operation 217
6.6.4 Clock Gating 218
6.6.5 On-Chip Memory Reduction 218
References 220
Part II Bio-Medical Wireless Communication 222
7 Short Distance Wireless Communications 223
7.1 Introduction 223
7.2 Biomedical Telemetry Methods 224
7.2.1 Wave Propagation 224
7.2.1.1 EM Wave Propagation 225
7.2.1.2 Acoustic Wave Propagation 228
7.2.2 Conduction 229
7.2.3 Near-Field Coupling 229
7.2.3.1 Capacitive Links 230
7.2.3.2 Inductive Links 230
7.2.4 Near-Field versus Far-Field 231
7.3 Modulation Methods 232
7.3.1 Analog Modulation 233
7.3.1.1 AM 233
7.3.1.2 FM and PM 235
7.3.1.3 Discussion on Analog Modulation Methods 239
7.3.2 Analog Pulse Modulation Encoding 239
7.3.2.1 Pulse Amplitude Modulation (PAM) 240
7.3.2.2 Pulse Width/Duration Modulation (PWM or PDM) 241
7.3.2.3 Pulse Position Modulation (PPM) 241
7.3.2.4 Pulse Frequency Modulation (PFM) 241
7.3.2.5 Analog Multiple Channel Modulation Methods 242
7.3.3 Digital Pulse Modulation Encoding 243
7.3.3.1 Pulse Code Modulation (PCM) 243
7.3.3.2 Line Encoding 244
7.3.4 Digital Modulation 246
7.3.4.1 ASK 247
7.3.4.2 FSK 247
7.3.4.3 PSK 247
7.3.4.4 Digital Multiple Channel Transmission 248
7.3.5 Analog or Digital Modulation? 251
7.3.6 Data Rates 251
7.4 Compression 252
7.4.1 Loss-Less Compression Algorithms 253
7.4.2 Lossy Compression Algorithms 254
7.5 Error Correction 255
7.5.1 Block Codes 256
7.5.2 Convolutional Codes 257
7.6 Carrier Frequency Selection for RF Links 257
7.6.1 Tissue Absorption vs. Antenna Size 257
7.6.2 Antenna Size vs. Bandwidth Requirements 260
7.6.3 Regulations vs. Bandwidth Requirements 262
7.7 Biomedical Telemetry Applications 263
7.7.1 Physiological Monitoring 263
7.7.1.1 Bladder Pressure Monitoring 263
7.7.1.2 Wireless ECG Monitoring Integrated in Textile 263
7.7.1.3 Textile Integrated Breathing and ECG Monitoring System 265
7.7.1.4 Pacemaker Monitoring and Programming 265
7.7.1.5 Inductive Power and Data Transmission for Wireless Endoscopy 267
7.7.1.6 Wireless Capsule Endoscopy: Given Imaging Pillcam 267
7.7.2 Orthopedic Implant Monitoring and Control 267
7.7.2.1 Distraction Nail Driver 267
7.7.2.2 Hip Prosthesis Fixation Analysis 268
7.7.2.3 Telemetry IC Design for Orthopedic Monitoring 270
7.7.3 Nerve Implant Monitoring and Stimulation 272
7.7.3.1 Cochlear Implants 272
7.7.3.2 Retinal Prosthesis 273
7.7.4 General Monitoring and Identification 273
7.7.4.1 RFID 273
7.7.4.2 Portable Heart Rate Monitoring 273
7.7.5 Overview of Commercial Biomedical Transmitters 274
7.7.5.1 Zarlink ZL70101 274
7.7.5.2 Zarlink ZL70250 276
7.7.5.3 Nordic NR24L01+ 276
7.7.5.4 Other Manufacturers 276
References 276
8 Bio-Medical Application of WBAN: Trends and Examples 282
8.1 The New Wave of Healthcare Systems 282
8.2 An Enabling Technology: Body Area Networks 283
8.3 Ambulatory Cardiac Monitoring 285
8.3.1 Trends 285
8.3.2 Snapshot on the State-of-the-Art 287
8.3.3 Detailed View on IMEC Low-Power Ambulatory ECG Prototypes 289
8.4 Wireless Sleep Monitoring 292
8.4.1 Trends 292
8.4.2 Snapshot on the State-of-the-Art 293
8.4.3 Detailed View on IMEC Wireless Sleep Staging Prototype 294
8.5 Mental Health and Emotion Monitoring 296
8.5.1 Trends 296
8.5.2 Snapshot on the State-of-the-Art 296
8.5.3 Detailed View on IMEC Wireless ANS Monitoring Prototype 297
8.6 Remaining Challenges 301
8.6.1 Ultra-Low-Power Technologies 301
8.6.2 Increasing Functionality 301
8.6.3 Autonomous Systems 302
8.6.4 Multi-Parameter Sensors 302
8.6.5 Dry Electrodes 302
8.6.6 Integration and Packaging Technology 303
8.7 Conclusions 303
References 304
9 Body Channel Communication for Energy-Efficient BAN 306
9.1 Introduction 306
9.1.1 Motivation 306
9.1.2 Human Body Communications 307
9.2 Channel Characteristics 308
9.3 Design of Wideband Signaling Communication Link 311
9.4 Wideband Signaling Transceiver 317
9.4.1 WBS Receiver AFE 322
9.4.2 All-Digital Quadratic Sampling CDR Circuit 325
9.4.3 Direct Digital Transmitter 327
9.5 Measurement Results 329
9.5.1 WBS Receiver AFE 329
9.5.2 WBS Transceiver 330
9.6 System Operation Demonstration 334
9.6.1 Introduction 334
9.6.2 Related Works 335
9.6.3 Design Architecture 335
9.6.4 Realization 336
9.6.4.1 Summary 338
9.7 Conclusion 338
References 338
Part III Examples of Bio-Medical ICs 340
10 Wearable Healthcare System 341
10.1 Introduction 341
10.1.1 Issues on Continuous Wearable Healthcare Using BSNs 342
10.1.2 Snapshots of Previous Works in Health Monitoring 343
10.1.3 An Example Wearable Healthcare System 345
10.2 Reliable and Low Cost BSN for Wearable Healthcare 345
10.2.1 Self-Configured Wearable BSN 345
10.2.2 Adaptive Power Transmission 348
10.2.3 Network Controller SoC 349
10.2.4 Summary 351
10.3 Fabric Circuit Board 351
10.3.1 Introduction 351
10.3.2 Dry Electrodes by P-FCB 352
10.3.2.1 Electrode Impedance 353
10.3.2.2 Impedance Versus Frequency 353
10.3.2.3 Impedance Over Time 353
10.3.3 Inductors by P-FCB 354
10.3.4 Summary 355
10.4 Wirelessly Powered Sensor 356
10.4.1 Introduction 356
10.4.2 Form Factor 356
10.4.3 Sensor Design 357
10.4.4 Wireless Power Transmission 358
10.4.4.1 Conventional Rectifier 359
10.4.4.2 Adaptive Threshold Rectifier (ATR) 360
10.4.5 Sensor Readout Front-End 361
10.4.6 Implementation 364
10.4.7 Summary 365
10.5 System Implementation 366
10.5.1 Wirelessly Powered Adhesive Bandage Sensor 366
10.5.2 Health Monitoring Chest Band 366
10.6 Conclusion 367
References 370
11 Digital Hearing Aid and Cochlear Implant 373
11.1 Introduction of the Digital Hearing Aid 373
11.1.1 Population Trends of the Hearing Aids 373
11.1.2 Future of the Hearing Aids 374
11.2 Conventional Digital Hearing Aids 375
11.2.1 Types of the Digital Hearing Aids 375
11.2.2 Design Issues of the Digital Hearing Aids 376
11.3 An Adaptive Digital Hearing Aid Chip with On Chip Human Factors Consideration 376
11.3.1 Introduction 376
11.3.2 An Internal Gain Verification Algorithm 378
11.3.2.1 Conventional Gain Verification Method 378
11.3.2.2 Autonomous Gain Verification Algorithm 379
11.3.2.3 Simulation Results 384
11.3.3 A Multi Mode Audio Processor 386
11.3.3.1 Hearing Aid Mode Operation 387
11.3.3.2 Smart Earphone Mode Operation 387
11.3.3.3 Direction Perception Mode Operation 388
11.3.4 Low Power Analog Front-End 389
11.3.4.1 System Design Considerations 389
11.3.4.2 Overall Architecture of the Analog Front-End 390
11.3.4.3 Adaptive Analog Front-End Design 391
11.3.4.4 Building Block Circuits Design 396
11.3.5 Low Power Digital Back-End 399
11.3.5.1 16 Channel IFIR DSP 399
11.3.5.2 Heterogeneous DAC 404
11.3.5.3 H-bridge as a Speaker Driver 406
11.3.6 Implementation and Measurement Results 406
11.3.7 Conclusions 412
11.4 Cochlear Implant 415
11.4.1 Introduction of the Cochlear Implant 415
11.4.2 Design of the Cochlear Implant 417
11.4.3 Future of the Cochlear Implant 419
References 419
12 Cardiac Rhythm Management ICs 422
12.1 Introduction 422
12.1.1 Anatomy of the Heart 422
12.1.2 Pacemakers 424
12.1.3 Implantable Cardioverter Defibrillators 424
12.2 Components of Pacemaker and ICD 425
12.2.1 Leads 425
12.2.2 Device Programmer 427
12.2.3 Device Subsystems 428
12.2.4 Case, Feedthrough and Header 428
12.2.5 Battery 429
12.2.6 ICD Capacitors 431
12.3 Electronics 432
12.3.1 Basic Pacemaker Functions 432
12.3.2 Sensing Circuits 433
12.3.3 ADC 434
12.3.4 Pace Driver and Mux 435
12.3.5 MCU 439
12.3.6 Sensor I/O 440
12.3.7 Telemetry 441
12.3.8 Clock Generator and Power Management 443
12.4 Basic ICD Functions 444
12.5 IC Process Technology 446
12.5.1 Process Technology 447
12.5.2 Low Power Design Techniques 448
12.6 Future Trends 450
References 451
13 Neurostimulation Design from an Energy and Information Transfer Perspective 453
13.1 Introduction 453
13.2 Overview of Challenges and System Requirements 454
13.3 Completing the Energy Transfer Circuit: From Battery to Body 456
13.3.1 Secondary Cell Recharge 457
13.3.2 Energy Source Characteristics 459
13.3.3 Boosting the Voltage---Providing Overhead for the Stimulation Engine 460
13.3.4 Generating the Stimulation Signal 463
13.3.4.1 Reference Current Generator 466
13.3.4.2 Active Sources and Sinks 466
13.3.4.3 Scaling Considerations for Electrode Sinks and Sources 468
13.3.4.4 Output Regulation with a Reference Resistor 469
13.3.4.5 Fractional Current Regulation Through Electrodes 471
13.3.4.6 Tying It All Together: A Complete Stimulation Engine 472
13.4 The Tissue Interface and General Safety Considerations 473
13.5 Future Directions and Trends 476
13.5.1 Closed-Loop, Adaptive Stimulation 476
13.5.2 Optogenetic Neuromodulation 477
13.6 Conclusion 479
References 479
14 Artificial Retina IC 481
14.1 Introduction 481
14.2 Fundamentals for Artificial Retina 482
14.2.1 Retina and Blindness 482
14.2.2 Principle of Artificial Retina 482
14.2.3 Classification of Artificial Retina 484
14.2.3.1 Extraocular Artificial Retina 484
14.2.3.2 Intraocular Artificial Retina 484
14.2.4 Artificial Retina System 485
14.3 Basic Circuits for Artificial Retina 487
14.3.1 Stimulation of Retinal Cells 488
14.3.2 Stimulator 488
14.3.2.1 Charge Balance 490
14.3.3 Photosensor 491
14.3.3.1 Photodiode 492
14.3.4 Photosensor Array in Artificial Retina IC 494
14.3.4.1 Micro PD Array 495
14.3.4.2 Active Pixel Sensor 496
14.3.4.3 Log Sensor 498
14.3.4.4 Photosensor Based on Pulse Frequency Modulation 500
14.3.5 Power and Data Transmission 504
14.4 Case studies: Artificial retina Device for over 1000 Electrodes 505
14.4.1 Multiple Microchip Architecture 505
14.4.1.1 Microchip Specification 506
14.4.1.2 Stimulator Specificaton 507
14.4.1.3 In vivo experiment 508
14.4.2 Multiple Microchip-Based Retinal Stimulator with Light-Controlled Function 510
References 511
Index 515
Erscheint lt. Verlag | 2.11.2010 |
---|---|
Reihe/Serie | Integrated Circuits and Systems | Integrated Circuits and Systems |
Zusatzinfo | X, 526 p. |
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Medizin / Pharmazie ► Pflege |
Medizin / Pharmazie ► Physiotherapie / Ergotherapie ► Orthopädie | |
Technik ► Bauwesen | |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Medizintechnik | |
Schlagworte | Bio-Medical DSP • CMOS Read-out Circuits • ICs for MICS • Low Power ADCs • Wireless PAN |
ISBN-10 | 1-4419-6597-1 / 1441965971 |
ISBN-13 | 978-1-4419-6597-4 / 9781441965974 |
Haben Sie eine Frage zum Produkt? |
Größe: 23,3 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich