Microwave Circuits for 24 GHz Automotive Radar in Silicon-based Technologies (eBook)
XIV, 208 Seiten
Springer Berlin (Verlag)
978-3-642-13598-9 (ISBN)
Vadim E. Issakov (M'07) was born on August 10, 1981 in The Russian Federation. In 2006 he received the M.Sc. degree (cum laude) in microwave engineering from the Technical University Munich, Germany. From 2006 to 2010, he worked towards the Ph.D. degree as a Research Assistant in the Institute of Electrical Engineering and Information Technology, Department for High-Frequency Electronics at the University of Paderborn, Germany. Currently he is with Infineon Technologies AG.
Vadim E. Issakov (M'07) was born on August 10, 1981 in The Russian Federation. In 2006 he received the M.Sc. degree (cum laude) in microwave engineering from the Technical University Munich, Germany. From 2006 to 2010, he worked towards the Ph.D. degree as a Research Assistant in the Institute of Electrical Engineering and Information Technology, Department for High-Frequency Electronics at the University of Paderborn, Germany. Currently he is with Infineon Technologies AG.
Preface 6
Contents 8
Acronyms 12
Chapter 1 Introduction 16
References 19
Chapter 2 Radar Systems 20
2.1 Radar Principle 20
2.2 Radar Equation and System Considerations 21
2.3 CW and Frequency-Modulated Radar 23
2.3.1 Doppler Radar 23
2.3.2 Frequency-Modulated Radar 24
2.3.2.1 Linear FM Continuous-Wave Radar 24
2.4 Angle Detection 26
2.5 Frequency Regulations 27
2.6 Receiver Architectures 29
2.6.1 Homodyne 29
2.6.2 Heterodyne 30
2.7 Status of Automotive Radar Systems 31
2.8 Technology Requirements for Radar Chipset 32
References 32
Chapter 3 CMOS and Bipolar Technologies 34
3.1 CMOS Technology 34
3.1.1 MOSFET Layout and Modeling Considerations 35
3.1.2 Devices Available in C11N 37
3.2 Bipolar Transistors 38
3.2.1 HBT Layout and Modeling Considerations 39
3.2.2 Devices Available in B7HF200 40
3.3 Technology Comparison 41
3.3.1 Transistor Performance 41
3.3.2 Metallization and Passive Components 44
References 46
Chapter 4 Modeling Techniques 48
4.1 Analytical Fitting of On-Chip Inductors 48
4.1.1 Series Branch Parameters Fitting 51
4.1.2 Shunt Branches Parameters Fitting 53
4.1.3 Results Verification 55
4.2 Transistor Finger Capacitance Estimation 57
References 60
Chapter 5 Measurement Techniques 62
5.1 S-parameter De-embedding Techniques 63
5.1.1 Extension of Thru Technique for De-embedding of Asymmetrical Error Networks 64
5.1.1.1 Theory 64
5.1.1.2 Result Verification 67
5.1.2 De-embedding of Differential Devices using cascade-based Two-Port Techniques 69
5.1.2.1 Theory 69
5.1.2.2 Result Verification 75
5.2 Differential Measurements using Baluns 78
5.2.1 Theoretical Analysis 79
5.2.1.1 Back-to-BackMeasurement 80
5.2.1.2 DUT Measurement 82
5.2.1.3 Insertion Loss De-embedding Error 83
5.2.2 Measurement Verification 84
References 89
Chapter 6 Radar Receiver Circuits 91
6.1 Low-Noise Amplifiers 92
6.1.1 LNA in CMOS Technology 92
6.1.2 LNA in SiGe:C Technology 97
6.1.3 Measurements of CMOS and SiGe LNAs 100
6.1.4 LNA Results Summary and Comparison 105
6.2 Mixers 106
6.2.1 Active Mixers 107
6.2.1.1 Active Mixer in CMOS Technology 107
6.2.1.2 Active Mixer in SiGe Technology 109
6.2.1.3 Measurements of CMOS and SiGe Active Mixers 111
6.2.1.4 Active Mixers Results Summary and Comparison 115
6.2.2 Passive Mixers 116
6.2.2.1 Passive Resistive Ring Mixer in CMOS Technology 116
6.2.2.2 Passive Bipolar Mixer in SiGe Technology 119
6.2.2.3 Measurements of CMOS and SiGe Passive Mixers 121
6.2.2.4 Passive Mixers Results Summary and Comparison 124
6.2.3 Comparison of Active and Passive Mixers 125
6.3 Single-Channel Receivers 126
6.3.1 Design of Active and Passive Receivers in CMOS 127
6.3.2 Receiver Measurements and Analysis 127
6.3.2.1 Chip Size 128
6.3.2.2 Power Consumption, Gain and Noise Figure 128
6.3.2.3 Linearity 130
6.3.2.4 Required LO Power 132
6.3.2.5 Isolation 133
6.3.2.6 Temperature Performance 134
6.3.3 Receiver Results Summary and Comparison 135
6.4 IQ Receivers 136
6.4.1 Design of IQ Receivers 136
6.4.1.1 IQ Receiver in CMOS Technology 136
6.4.1.2 IQ Receiver in SiGe Technology 138
6.4.2 IQ Receiver Measurements 139
6.4.3 IQ Receiver Results Summary and Comparison 145
6.5 Integrated Passive Circuits 146
6.5.1 Circuit Design and Layout Considerations 146
6.5.1.1 On-Chip 180. Power Splitter/Combiner 146
6.5.1.2 On-Chip 90. Power Splitter/Combiner 148
6.5.1.3 On-Chip 180. Hybrid Ring Coupler 150
6.5.2 Realization and Measurement Results 151
6.5.2.1 On-Chip 180. Power Splitter/Combiner 151
6.5.2.2 On-Chip 90. Power Splitter/Combiner 152
6.5.2.3 On-Chip 180. Hybrid Ring Coupler 154
6.5.3 Results Summary and Discussion 157
6.6 Circuit-Level RF ESD Protection 158
6.6.1 Overview of Circuit-Level Protection Techniques 159
6.6.2 Virtual Ground Concept 161
6.6.2.1 Concept Verification by Circuit Simulation 163
6.6.2.2 Concept Verification by HBM Measurement 164
6.6.2.3 Concept Verification by TLP Measurement 165
6.6.3 Transformer Protection Concept 167
6.6.3.1 Test LNA Circuit Design 169
6.6.3.2 Test LNA Realization and Measurement 170
6.6.3.3 Concept Verification by TLP Measurement 171
References 172
Chapter 7 Radar Transceiver Circuits 178
7.1 IQ Transceiver in CMOS 179
7.1.1 IQ Transceiver Circuit Design 179
7.1.2 Measurements of Transceiver 182
7.1.3 Results Summary and Comparison 184
7.2 Merged Power-Amplifier-Mixer Transceiver 186
7.2.1 System Considerations 186
7.2.2 Power-Amplifier-Mixer Circuit Design 187
7.2.3 PAMIX Measurements 189
7.2.4 Results Summary and Comparison 192
References 193
Chapter 8 Conclusions and Outlook 194
Appendix A LFMCW Radar 197
References 200
Appendix B FSCW Radar 201
References 202
Appendix C Surface Charge Method 203
C.1 Surface Charge Method Theory 203
C.2 Meshing of the Multifinger Layout 206
Appendix D Measurement of Active Circuits 208
D.1 Measurement Techniques 208
D.2 LNA Characterization 211
D.2.1 S-parameter Measurement 211
D.2.2 Noise Figure Measurement 211
D.2.3 Linearity Measurement 213
D.3 Mixer and Receiver Characterization 214
D.3.1 Conversion Gain Measurement 214
D.3.2 Noise Figure Measurement 214
D.3.3 Linearity Measurement 215
References 216
Index 217
Erscheint lt. Verlag | 5.8.2010 |
---|---|
Zusatzinfo | XIV, 208 p. |
Verlagsort | Berlin |
Sprache | englisch |
Themenwelt | Technik ► Elektrotechnik / Energietechnik |
Technik ► Fahrzeugbau / Schiffbau | |
Schlagworte | CMOS • field-effect transistor • Integrated circuit • Integrated Circuits • ISM • Radar • SIGE |
ISBN-10 | 3-642-13598-6 / 3642135986 |
ISBN-13 | 978-3-642-13598-9 / 9783642135989 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 14,4 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich