Introduction to BioMEMS
Seiten
2012
Crc Press Inc (Verlag)
978-1-4398-1839-8 (ISBN)
Crc Press Inc (Verlag)
978-1-4398-1839-8 (ISBN)
The entire scope of the BioMEMS field—at your fingertipsHelping to educate the new generation of engineers and biologists, Introduction to BioMEMS explains how certain problems in biology and medicine benefit from and often require the miniaturization of devices. The book covers the whole breadth of this dynamic field, including classical microfabrication, microfluidics, tissue engineering, cell-based and noncell-based devices, and implantable systems. It focuses on high-impact, creative work encompassing all the scales of life—from biomolecules to cells, tissues, and organisms.
Brilliant color presentationAvoiding the overwhelming details found in many engineering and physics texts, this groundbreaking book—in color throughout—includes only the most essential formulas as well as many noncalculation-based exercises. Important terms are highlighted in bold and defined in a glossary. The text contains more than 400 color figures, most of which are from the original researchers.
Coverage of both historical perspectives and the latest developmentsDeveloped from the author’s long-running course, this classroom-tested text gives readers a vivid picture of how the field has grown by presenting historical perspectives and a timeline of seminal discoveries. It also describes numerous state-of-the-art biomedical applications that benefit from "going small," including devices that record the electrical activity of brain cells, measure the diffusion of molecules in microfluidic channels, and allow for high-throughput studies of gene expression.
Brilliant color presentationAvoiding the overwhelming details found in many engineering and physics texts, this groundbreaking book—in color throughout—includes only the most essential formulas as well as many noncalculation-based exercises. Important terms are highlighted in bold and defined in a glossary. The text contains more than 400 color figures, most of which are from the original researchers.
Coverage of both historical perspectives and the latest developmentsDeveloped from the author’s long-running course, this classroom-tested text gives readers a vivid picture of how the field has grown by presenting historical perspectives and a timeline of seminal discoveries. It also describes numerous state-of-the-art biomedical applications that benefit from "going small," including devices that record the electrical activity of brain cells, measure the diffusion of molecules in microfluidic channels, and allow for high-throughput studies of gene expression.
Albert Folch is an associate professor in the Department of Bioengineering at the University of Washington. Dr. Folch has previously worked as a postdoc researcher at Harvard University’s Center for Engineering in Medicine, a postdoc researcher at MIT, and a visiting scientist at the Lawrence Berkeley National Laboratory. He is a recipient of an NSF CAREER Award and is on the advisory board of Lab on a Chip. His research focuses on the interface between cell biology and microfluidics.
How Do We Make Small Things? Micropatterning of Substrates and Cells. Microfluidics. Molecular Biology on a Chip. Cell-Based Chips for Biotechnology. BioMEMS for Cell Biology. Tissue Microengineering. Implantable Microdevices. Appendix. Index.
Zusatzinfo | 7 Tables, black and white; 476 Illustrations, black and white |
---|---|
Verlagsort | Bosa Roca |
Sprache | englisch |
Maße | 178 x 254 mm |
Gewicht | 1220 g |
Themenwelt | Medizin / Pharmazie ► Physiotherapie / Ergotherapie ► Orthopädie |
Technik ► Medizintechnik | |
Technik ► Umwelttechnik / Biotechnologie | |
ISBN-10 | 1-4398-1839-8 / 1439818398 |
ISBN-13 | 978-1-4398-1839-8 / 9781439818398 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Spiraldynamik - programmierte Therapie für konkrete Resultate
Buch | Hardcover (2021)
Thieme (Verlag)
CHF 146,95