Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Welding and Joining of Aerospace Materials -

Welding and Joining of Aerospace Materials

Mahesh Chaturvedi (Herausgeber)

Buch | Hardcover
448 Seiten
2011
Woodhead Publishing Ltd (Verlag)
978-1-84569-532-3 (ISBN)
CHF 339,95 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
Welding and joining techniques play an essential role in both the manufacture and in-service repair of aerospace vehicles and components. This important book provides in-depth information on different techniques for joining metallic and non-metallic aerospace materials and their applications.
Welding and joining techniques play an essential role in both the manufacture and in-service repair of aerospace structures and components, and these techniques become more advanced as new, complex materials are developed. Welding and joining of aerospace materials provides an in-depth review of different techniques for joining metallic and non-metallic aerospace materials.

Part one opens with a chapter on recently developed welding techniques for aerospace materials. The next few chapters focus on different types of welding such as inertia friction, laser and hybrid laser-arc welding. The final chapter in part one discusses the important issue of heat affected zone cracking in welded superalloys. Part two covers other joining techniques, including chapters on riveting, composite-to-metal bonding, diffusion bonding and recent improvements in bonding metals. Part two concludes with a chapter focusing on the use of high-temperature brazing in aerospace engineering. Finally, an appendix to the book covers the important issue of linear friction welding.

With its distinguished editor and international team of contributors, Welding and joining of aerospace materials is an essential reference for engineers and designers in the aerospace, materials and welding and joining industries, as well as companies and other organisations operating in these sectors and all those with an academic research interest in the subject.

Mahesh C. Chaturvedi is Professor Emeritus in the Department of Mechanical and Manufacturing Engineering at the University of Manitoba, Canada.

Contributor contact details

Preface

Part I: Welding techniques

Chapter 1: New welding techniques for aerospace engineering

Abstract:

1.1 Introduction

1.2 Airworthiness implications of new welding and joining technologies

1.3 New developments in welding and joining of aerospace materials

1.4 Failure of welded and bonded joints in service

1.5 The importance of international standards

Chapter 2: Inertia friction welding (IFW) for aerospace applications

Abstract:

2.1 Introduction

2.2 Process parameters, heat generation and modelling

2.3 Microstructural development

2.4 Development of mechanical properties

2.5 Residual stress development

2.6 Future trends

2.7 Source of further information and advice

Chapter 3: Laser welding of metals for aerospace and other applications

Abstract:

3.1 Introduction

3.2 Operating principles and components of laser sources – an overview

3.3 Key characteristics of laser light

3.4 Basic phenomena of laser light interaction with metals

3.5 Laser welding fundamentals

3.6 Laser weldability of titanium alloys

3.7 Future trends

3.8 Sources of further information and advice

Chapter 4: Hybrid laser-arc welding of aerospace and other materials

Abstract:

4.1 Introduction

4.2 Fundamentals of hybrid laser-arc welding

4.3 Hybrid laser-arc welding of aeronautical materials

4.4 Future trends

Chapter 5: Heat-affected zone cracking in welded nickel superalloys

Abstract:

5.1 Introduction

5.2 Characteristics of crack-inducing intergranular liquid and factors that affect heat-affected zone (HAZ) cracking

5.3 Formation of HAZ grain-boundary liquid

5.4 Constitutional liquation of second-phase particles in nickel-based superalloys

5.5 Role of minor elements in HAZ intergranular liquation cracking

5.6 Conclusions

Part II: Other joining techniques

Chapter 6: Assessing the riveting process and the quality of riveted joints in aerospace and other applications

Abstract:

6.1 Introduction

6.2 Riveting process and quality assessment of the rivet installation

6.3 Determination of residual strains and interference in riveted lap joints

6.4 Summary and recommendations for the riveting process research

6.5 Case studies using the force-controlled riveting method

6.6 Conclusions

6.7 Acknowledgements

Chapter 7: Quality control and non-destructive testing of self-piercing riveted joints in aerospace and other applications

Abstract:

7.1 Introduction

7.2 Computer vision

7.3 Ultrasonic testing

7.4 Conclusion

Chapter 8: Improvements in bonding metals for aerospace and other applications

Abstract:

8.1 Introduction: key problems in metal bonding

8.2 Developments in the range of adhesives for metal

8.3 Developments in surface treatment techniques for metal

8.4 Developments in joint design

8.5 Developments in modelling and testing the effectiveness of adhesive-bonded metal joints

8.6 Future trends

8.7 Sources of further information and advice

Chapter 9: Composite to metal bonding in aerospace and other applications

Abstract:

9.1 Introduction

9.2 Testing of adhesive bonded structures

9.3 Bonding to the metal substrate

9.4 Composite pre-treatment

9.5 Bonding composite to metal

9.6 Adhesives

9.7 Composite–metal bonded structures

9.8 Conclusions

9.9 Acknowledgements

Chapter 10: Diffusion bonding of metal alloys in aerospace and other applications

Abstract:

10.1 Introduction

10.2 Diffusion-bonding process

10.3 Conclusions and future trends

Chapter 11: High-temperature brazing in aerospace engineering

Abstract:

11.1 Introduction

11.2 Filler metals

11.3 Trends in brazing at high temperature

11.4 Conclusion and future trends

Appendix: Linear friction welding in aerospace engineering

Index

Erscheint lt. Verlag 19.12.2011
Reihe/Serie Woodhead Publishing Series in Welding and Other Joining Technologies
Verlagsort Cambridge
Sprache englisch
Maße 156 x 234 mm
Gewicht 840 g
Themenwelt Technik Fahrzeugbau / Schiffbau
Technik Luft- / Raumfahrttechnik
Technik Maschinenbau
ISBN-10 1-84569-532-1 / 1845695321
ISBN-13 978-1-84569-532-3 / 9781845695323
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich