Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Reinforced Concrete: Mechanics and Design - James K. Wight, James G. MacGregor

Reinforced Concrete: Mechanics and Design

International Edition
Media-Kombination
1176 Seiten
2011 | 6th edition
Pearson Education
978-0-273-76454-0 (ISBN)
CHF 145,85 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
Reinforced concrete design encompasses both the art and science of engineering. This book presents the theory of reinforced concrete as a direct application of the laws of statics and mechanics of materials. In addition, it emphasizes that a successful design not only satisfies design rules, but also is capable of being built in a timely fashion and for a reasonable cost. A multi-tiered approach makes Reinforced Concrete: Mechanics and Design an outstanding textbook for a variety of university courses on reinforced concrete design. Topics are normally introduced at a fundamental level, and then move to higher levels where prior educational experience and the development of engineering judgment will be required.

PREFACE xi

ABOUT THE AUTHORS xv

CHAPTER 1 INTRODUCTION



1-1 Reinforced Concrete Structures

1-2 Mechanics of Reinforced Concrete

1-3 Reinforced Concrete Members

1-4 Factors Affecting Choice of Reinforced Concrete for a Structure

1-5 Historical Development of Concrete and Reinforced Concrete as Structural Materials

1-6 Building Codes and the ACI Code



CHAPTER 2 THE DESIGN PROCESS

2-1 Objectives of Design

2-2 The Design Process

2-3 Limit States and the Design of Reinforced Concrete

2-4 Structural Safety

2-5 Probabilistic Calculation of Safety Factors

2-6 Design Procedures Specified in the ACI Building Code

2-7 Load Factors and Load Combinations in the 2011 ACI Code

2-8 Loadings and Actions

2-9 Design for Economy

2-10 Sustainability

2-11 Customary Dimensions and Construction Tolerances

2-12 Inspection

2-13 Accuracy of Calculations

2-14 Handbooks and Design Aids



CHAPTER 3 MATERIALS

3-1 Concrete

3-2 Behavior of Concrete Failing in Compression

3-3 Compressive Strength of Concrete

3-4 Strength Under Tensile and Multiaxial Loads

3-5 Stress Strain Curves for Concrete

3-6 Time-Dependent Volume Changes

3-7 High-Strength Concrete

3-8 Lightweight Concrete

3-9 Fiber Reinforced Concrete

3-10 Durability of Concrete

3-11 Behavior of Concrete Exposed to High and Low Temperatures

3-12 Shotcrete

3-13 High-Alumina Cement

3-14 Reinforcement

3-15 Fiber-Reinforced Polymer (FRP) Reinforcement

3-16 Prestressing Steel



CHAPTER 4 FLEXURE: BEHAVIOR AND NOMINAL STRENGTH OF BEAM SECTIONS

4-1 Introduction

4-2 Flexure Theory

4-3 Simplifications in Flexure Theory for Design

4-4 Analysis of Nominal Moment Strength for Singly Reinforced Beam Sections

4-5 Definition of Balanced Conditions

4-6 Code Definitions of Tension-Controlled and Compression-Controlled Sections

4-7 Beams with Compression Reinforcement

4-8 Analysis of Flanged Sections

4-9 Unsymmetrical Beam Sections



CHAPTER 5 FLEXURAL DESIGN OF BEAM SECTIONS

5-1 Introduction

5-2 Analysis of Continuous One-Way Floor Systems

5-3 Design of Singly-Reinforced Beam Sections with Rectangular Compression Zones

5-4 Design of Doubly-Reinforced Beam Sections

5-5 Design of Continuous One-Way Slabs



CHAPTER 6 SHEAR IN BEAMS

6-1 Introduction

6-2 Basic Theory

6-3 Behavior of Beams Failing in Shear

6-4 Truss Model of the Behavior of Slender Beams Failing in Shear

6-5 Analysis and Design of Reinforced Concrete Beams for Shear ACI Code

6-6 Other Shear Design Methods

6-7 Hanger Reinforcement

6-8 Tapered Beams

6-9 Shear in Axially Loaded Members

6-10 Shear in Seismic Regions



CHAPTER 7 TORSION

7-1 Introduction and Basic Theory

7-2 Behavior of Reinforced Concrete Members Subjected to Torsion

7-3 Design Methods for Torsion

7-4 Thin-Walled Tube/Plastic Space Truss Design Method

7-5 Design for Torsion and Shear ACI Code

7-6 Application of ACI Code Design Method for Torsion



CHAPTER 8 DEVELOPMENT, ANCHORAGE, AND SPLICING OF REINFORCEMENT

8-1 Introduction

8-2 Mechanism of Bond Transfer

8-3 Development Length

8-4 Hooked Anchorages

8-5 Headed and Mechanically Anchored Bars in Tension

8-6 Design for Anchorage

8-7 Bar Cutoffs and Development of Bars in Flexural Members

8-8 Reinforcement Continuity and Structural Integrity Requirements

8-9 Splices



CHAPTER 9 SERVICEABILITY

9-1 Introduction

9-2 Elastic Analysis of Stresses in Beam Sections

9-3 Cracking

9-4 Deflections of Concrete Beams

9-5 Consideration of Deflections in Design

9-6 Frame Deflections

9-7 Vibrations

9-8 Fatigue



CHAPTER 10 CONTINUOUS BEAMS AND ONE-WAY SLABS

10-1 Introduction

10-2 Continuity in Reinforced Concrete Structures

10-3 Continuous Beams

10-4 Design of Girders

10-5 Joist Floors

10-6 Moment Redistribution



CHAPTER 11 COLUMNS: COMBINED AXIAL LOAD AND BENDING

11-1 Introduction

11-2 Tied and Spiral Columns

11-3 Interaction Diagrams

11-4 Interaction Diagrams for Reinforced Concrete Columns

11-5 Design of Short Columns

11-6 Contributions of Steel and Concrete to Column Strength

11-7 Biaxially Loaded Columns



CHAPTER 12 SLENDER COLUMNS

12-1 Introduction

12-2 Behavior and Analysis of Pin-Ended Columns

12-3 Behavior of Restrained Columns in Nonsway Frames

12-4 Design of Columns in Nonsway Frames

12-5 Behavior of Restrained Columns in Sway Frames

12-6 Calculation of Moments in Sway Frames Using Second-Order Analyses

12-7 Design of Columns in Sway Frames

12-8 General Analysis of Slenderness Effects

12-9 Torsional Critical Load



CHAPTER 13 TWO-WAY SLABS: BEHAVIOR, ANALYSIS, AND DESIGN

13-1 Introduction

13-2 History of Two-Way Slabs

13-3 Behavior of Slabs Loaded to Failure in Flexure

13-4 Analysis of Moments in Two-Way Slabs

13-5 Distribution of Moments in Slabs

13-6 Design of Slabs

13-7 The Direct-Design Method

13-8 Equivalent-Frame Methods

13-9 Use of Computers for an Equivalent-Frame Analysis

13-10 Shear Strength of Two-Way Slabs

13-11 Combined Shear and Moment Transfer in Two-Way Slabs

13-12 Details and Reinforcement Requirements

13-13 Design of Slabs Without Beams

13-14 Design of Slabs with Beams in Two Directions

13-15 Construction Loads on Slabs

13-16 Deflections in Two-Way Slab Systems

13-17 Use of Post-Tensioning



CHAPTER 14 TWO-WAY SLABS: ELASTIC AND YIELD-LINE ANALYSES

14-1 Review of Elastic Analysis of Slabs

14-2 Design Moments from a Finite-Element Analysis

14-3 Yield-Line Analysis of Slabs: Introduction

14-4 Yield-Line Analysis: Applications for Two-Way Slab Panels

14-5 Yield-Line Patterns at Discontinuous Corners

14-6 Yield-Line Patterns at Columns or at Concentrated Loads



CHAPTER 15 FOOTINGS

15-1 Introduction

15-2 Soil Pressure Under Footings

15-3 Structural Action of Strip and Spread Footings

15-4 Strip or Wall Footings

15-5 Spread Footings

15-6 Combined Footings

15-7 Mat Foundations

15-8 Pile Caps



CHAPTER 16 SHEAR FRICTION, HORIZONTAL SHEAR TRANSFER, AND COMPOSITE CONCRETE BEAMS

16-1 Introduction

16-2 Shear Friction

16-3 Composite Concrete Beams



CHAPTER 17 DISCONTINUITY REGIONS AND STRUT-AND-TIE MODELS

17-1 Introduction

17-2 Design Equation and Method of Solution

17-3 Struts

17-4 Ties

17-5 Nodes and Nodal Zones

17-6 Common Strut-and-Tie Models

17-7 Layout of Strut-and-Tie Models

17-8 Deep Beams

17-9 Continuous Deep Beams

17-10 Brackets and Corbels

17-11 Dapped Ends

17-12 Beam Column Joints

17-13 Bearing Strength

17-14 T-Beam Flanges



CHAPTER 18 WALLS AND SHEAR WALLS

18-1 Introduction

18-2 Bearing Walls

18-3 Retaining Walls

18-4 Tilt-Up Walls

18-5 Shear Walls

18-6 Lateral Load-Resisting Systems for Buildings

18-7 Shear Wall Frame Interaction

18-8 Coupled Shear Walls

18-9 Design of Structural Walls General

18-10 Flexural Strength of Shear Walls

18-11 Shear Strength of Shear Walls

18-12 Critical Loads for Axially Loaded Walls



CHAPTER 19 DESIGN FOR EARTHQUAKE RESISTANCE

19-1 Introduction

19-2 Seismic Response Spectra

19-3 Seismic Design Requirements

19-4 Seismic Forces on Structures

19-5 Ductility of Reinforced Concrete Members

19-6 General ACI Code Provisions for Seismic Design

19-7 Flexural Members in Special Moment Frames

19-8 Columns in Special Moment Frames

19-9 Joints of Special Moment Frames

19-10 Structural Diaphragms

19-11 Structural Walls

19-12 Frame Members not Proportioned to Resist Forces Induced by Earthquake Motions

19-13 Special Precast Structures

19-14 Foundations

APPENDIX A

APPENDIX B

INDEX

Sprache englisch
Maße 205 x 251 mm
Gewicht 2040 g
Themenwelt Schulbuch / Wörterbuch
Technik Bauwesen
ISBN-10 0-273-76454-3 / 0273764543
ISBN-13 978-0-273-76454-0 / 9780273764540
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Marion Wiese

Media-Kombination (2024)
RM Rudolf Müller Medien GmbH & Co. KG
CHF 104,95
Lernkarten für die Grundausbildung im Brandschutzdienst

von Nora Sickmann; Dennis Happe; Sascha Wecker

Lehr- oder Lernkarte (2023)
Stumpf + Kossendey
CHF 102,95